Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21060278-5    https://doi.org/10.11896/cldb.21060278
  金属与金属基复合材料 |
高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响
徐艳茹1, 汪燕青2,*, 陈焕明2, 马骏2, 侯毅2
1 宁夏大学机械工程学院,银川 750021
2 宁夏大学物理与电子电气工程学院,银川 750021
Effect of Holding Time on Particle Size and Morphology of AgNPs/SiO2 Prepared by Rapid Thermal Annealing Method
XU Yanru1, WANG Yanqing2,*, CHEN Huanming2, MA Jun2, HOU Yi2
1 School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China
2 School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 15112KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高温快速退火法在制备金属纳米结构方面具有成本低廉、几何结构及尺寸可控等优点,被广泛用于等离激元纳米结构的制备。高温退火下纳米颗粒形貌随保温时间的演化机理对纳米结构等离激元效应调控具有重要意义。本工作研究了900 ℃退火过程中石英基底上纳米银颗粒(AgNPs/SiO2)形貌随保温时间的演化。通过热场发射扫描电镜实验和粒径分布统计分析发现,当保温时间为15 s时,连续银膜演变为均匀分散的银岛和二次颗粒,平均粒径分别为(152±46) nm、(53±13) nm。这是由于纳米银颗粒的微观形貌与原始银膜结构缺陷之间存在继承性,高温退火后,原始银膜的沟渠网络通过扩散机制逐渐收缩并分离成条状银岛,而沟渠网络中二次形核的银膜形成较小的纳米银颗粒,即二次颗粒。随着保温时间延长至1 min、5 min,条状银岛逐渐演变为球冠形颗粒,粒径减小,数量几乎不变;10 min时,二次颗粒数量由于熟化蒸发而急剧减少。保温时间为5 min时形成的纳米银作为表面增强拉曼散射基底能够用于10-8 mol/L 龙胆紫分子的检测。该结果表明通过改变退火时间可以调控纳米银颗粒的形貌和粒径,为快速退火制备等离激元基底提供理论基础,有利于纳米结构在太阳能电池和痕量检测的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐艳茹
汪燕青
陈焕明
马骏
侯毅
关键词:  表面等离激元(SP)  高温快速退火  离子溅射  纳米银膜  保温时间  形貌演化    
Abstract: Rapid thermal annealing is an advantageous method for preparation of plasmonic nanostructures, which offers low cost and controllable size and geometry. The mechanism of nanoparticles evolving with holding time via rapid thermal annealing is significant for turning plasmonic effect of nanostructures. In this work, the morphology evolution of silver nanoparticles on quartz substrate (AgNPs/SiO2) under different holding time was studied. The size and geometry of AgNPs were characterized by using the field emission scanning electron microcopy and by using statistical method. It is found that when holding time was 15 s, the continuous silver film transformed into uniform Ag islands and secondary nanoparticles with respective mean size of (152±46) nm and (53±13) nm. This is attributed to that AgNPs inherit the morphology features of original defects produced during silver film sputtering. After annealing, the channel networks in the continuous silver film diffusely shrink to strip islands. The secondary nucleuses originally grew in the channel network turn into small nanoparticles, which are called the secondary nanoparticles. When the holding time increases from 15 s to 1 min and 5 min, the strip islands change into spherical crown particles with size decreased and quantity unchanged. When annealed for 10 min, the number of secondary nanoparticles substantially drops resulting from the evaporation during the ripening process. It is found that AgNPs annealed for 5 min exhibits significant plasmonic effect in the surface enhanced Raman scattering measurement of crystal violet molecules, with content as low as 10-8 mol/L. It reveals that the geometry and size of AgNPs can be turned via regulating the holding time, providing a theoretical base for preparation of plasmonic substrate by rapid thermal annealing. It also helps for applications of plasmonic nanostructures into solar cells and trace detection.
Key words:  surface plasmon (SP)    rapid thermal annealing    ion sputtering    nano silver film    holding time    morphological evolution
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TB34  
基金资助: 宁夏自然科学基金(2020AAC03072;2021AAC03059);宁夏回族自治区重点研发计划项目(引才专项)(2021BEB04020)
通讯作者:  * 汪燕青,宁夏大学物理与电子电气工程学院副教授。2007年7月毕业于中国科学院高能物理研究所,获凝聚态物理博士专业学位。主要从事凝聚态物理学、金属材料学、微纳米材料、表面增强拉曼光谱和科学考古方面的研究。在国内外期刊发表文章10余篇,申报发明专利6项。yqwang_nxu@163.com   
作者简介:  徐艳茹,宁夏大学机械工程学院讲师。2008年9月、2010年9月、2019年12月分别于武汉大学获得工学学士、工学硕士和工学博士学位。主要从事局域表面等离激元基底应用研究、微纳传热测量。在国内外期刊上发表文章10余篇,包括Nanosale、Applied Thermal Engineering、Materials Research Express、《排灌机械工程学报》等,申报专利2项。
引用本文:    
徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
XU Yanru, WANG Yanqing, CHEN Huanming, MA Jun, HOU Yi. Effect of Holding Time on Particle Size and Morphology of AgNPs/SiO2 Prepared by Rapid Thermal Annealing Method. Materials Reports, 2023, 37(7): 21060278-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060278  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21060278
1 Maier S A. Plasmonics:fundamentals and applications, Springer Science & Business Media, UK, 2007, pp. 21.
2 Feng S L, Wang J Y, Chen S, et al. Acta Physica Sinica, 2019, 68(14), 147801 (in Chinese).
冯仕靓, 王靖宇, 陈舒, 等. 物理学报, 2019, 68(14), 147801.
3 Kneipp K, Wang Y, Kneipp H, et al. Physical Review Letters, 1997, 78(9), 1667.
4 Xu R, Du L, Adekoya D, et al. Advanced Energy Materials, 2021, 11(15), 2001537.
5 Wang L, Hasanzadeh K M, Meunier M. Advanced Functional Materials, 2020, 30(51), 2005400.
6 Jahn M, Patze S, Hidi I J, et al. The Analyst, 2016, 141(3), 756.
7 Barman B, Dhasmana H, Verma A, et al. Advances in Natural Sciences:Nanoscience and Nanotechnology, 2017, 8(3), 035010.
8 Tiwari S P, Kumar A, Kumar K, et al. New Journal of Chemistry, 2020, 44(45), 19672.
9 Karaman M, Aydın M, Sedani S H, et al. Microelectronic Engineering, 2013, 108, 112.
10 Ji J. Industrial Technology Innovation, 2019, 6(5), 50 (in Chinese).
姬佳林. 工业技术创新, 2019, 6(5), 50.
11 Zhang X, Zhang J, Fan T, et al. Spectroscopy and Spectral Analysis, 2014, 34(9), 2444 (in Chinese).
张晓蕾, 张洁, 范拓, 等. 光谱学与光谱分析, 2014, 34(9), 2444.
12 Xu Y, Wang C, Han X, et al. Journal of Xiamen University (Natural Science), 2016, 55(6), 881 (in Chinese).
许怡红, 王尘, 韩响, 等. 厦门大学学报(自然科学版), 2016, 55(6), 881.
13 Li N, Gao F, Song M, et al. Chinese Journal of Power Sources, 2014, 38(4), 665 (in Chinese).
李宁, 高斐, 宋美周, 等. 电源技术, 2014, 38(4), 665.
14 Mandal P, Sharma S. Renewable and Sustainable Energy Reviews, 2016, 65, 537.
15 Wu Z, Shui S, Zhang X, et al. Materials Reports A:Review Papers, 2019, 33(2), 426 (in Chinese).
吴治涌, 水世显, 张显, 等. 材料导报:综述篇, 2019, 33(2), 426.
16 Li H, Xing Z, Hodúlová E, et al. Materials Reports A:Review Papers, 2020, 34(2), 105 (in Chinese).
李红, 邢增程, Hodúlová E, 等. 材料导报:综述篇, 2020, 34(2), 105.
17 Joyce B, Neave J, Dobson P J, et al. Physical Review B, 1984, 29(2), 814.
18 Li W, Li S. Journal of Thermal Science and Technology, 2007, 6(3), 198 (in Chinese).
李维仲, 李爽. 热科学与技术, 2007, 6(3), 198.
19 Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. ACS Nano, 2020, 14(1), 28.
[1] 黄同瑊, 晁代义, 于芳, 张芮源, 周艳艳, 赵晓红, 徐志远. 保温时间对2024包铝薄板元素扩展及力学性能的影响[J]. 材料导报, 2021, 35(Z1): 421-424.
[2] 罗磊, 李向明, 魏岑, 王献. 基于相场模拟的倾斜共晶生长研究进展[J]. 材料导报, 2020, 34(11): 11114-11120.
[3] 邓磊波, 张雪峰, 张明星, 欧阳顺利, 殷哲一. 熔制保温时间对CAMS系矿渣微晶玻璃结构与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 125-130.
[4] 敖晓辉,邢书明,于佰水,张佳虹,郭强,王如芬. 铸造铝硅合金熔炼过程中Ca含量的变化规律*[J]. 材料导报编辑部, 2017, 31(10): 92-95.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed