Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20080191-10    https://doi.org/10.11896/cldb.20080191
  无机非金属及其复合材料 |
非线性晶体和光电材料硒化镓的研究进展
杜辉, 陈巧, 刘婷, 贺毅, 金应荣
西华大学材料科学与工程学院,成都 611700
Research Progress of Nonlinear Crystal and Optoelectronic Material GaSe
DU Hui, CHEN Qiao, LIU Ting, HE Yi, JIN Yingrong
School of Materials Science and Engineering, Xihua University, Chengdu 611700, China
下载:  全 文 ( PDF ) ( 9467KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 中远红外激光和光电器件在军事和民用等领域都有广泛的应用。中远红外非线性光学晶体作为中远红外激光器的核心部件变得越来越重要,而硒化镓(GaSe)正是综合性能优异的中远红外非线性光学晶体。此外,二维GaSe材料凭借其优异的光电性能在光电器件(如光电探测器)等领域也有重要应用。
尽管GaSe有很多优点,在中远红外方面具有巨大的应用前景,但高光学质量大尺寸的GaSe单晶生长技术仍需进一步研究。通过国内外研究者的努力,GaSe的合成和生长方法不断改进。由于Se易挥发,调控GaSe化学计量比十分重要,调控的途径有:(1)通过补充Se蒸汽来平衡Se蒸汽压从而调控GaSe化学计量比;(2)通过限制Se蒸汽的自由空间有效抑制Se的挥发。其次GaSe的硬度较低,难以切割加工,这也是影响其广泛商业化应用的重要原因。在提高GaSe硬度方面,学者们做了大量的掺杂研究,研究发现通过掺杂可有效提高GaSe晶体的硬度,同时还可以提升一定的光学性能。在二维GaSe方面,虽然目前已经通过各种方法制备出了二维GaSe纳米片,并在电子、光电器件等方面有不错的研究成果,如紫外和红外高响应率光电探测器、气敏传感器、柔性光电器件与光电化学型电极等。但获得高质量、大尺寸和厚度可控的二维GaSe材料仍然困难。
本文首先简要介绍了GaSe的结构与性质,然后主要从GaSe块体材料和二维材料两个方面,综述了GaSe材料的制备、掺杂研究、中远红外和太赫兹(THz)波段应用以及在电子器件、光电器件领域的研究进展,最后对GaSe未来研究和应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜辉
陈巧
刘婷
贺毅
金应荣
关键词:  中远红外  硒化镓  非线性光学晶体  光电器件  二维材料    
Abstract: Mid-far infrared lasers and optoelectronic devices are widely used in military and civilian fields. Mid-far infrared nonlinear optical crystals are becoming more and more important as the core component of mid-far infrared lasers, and gallium selenide (GaSe) is a mid-far infrared nonlinear optical crystal with excellent comprehensive performance. In addition, based on their excellent photoelectric properties, it is more importance for two-dimensional GaSe to use in optoelectronic devices (such as photodetectors).
Although GaSe has many advantages and great application prospects in the mid-far infrared, the growth technology of GaSe single crystals with high optical quality and large size still needs further research. Both synthetic and growth methods of GaSe have been continuously improved, through the efforts of domestic and foreign researchers. Since Se is volatile, it is very important to control the stoichiometric ratio of GaSe. The ways of regulation are: (i) adjust the stoichiometric ratio by supplementing Se vapor to balance the Se vapor pressure; (ii) suppress the volatilization of Se by limiting the free space of Se vapor to effectively. Secondly, it is difficult to cut and process for the soft hardness of GaSe, which could account for the important reason that affecting its wide commercial application. To improving the hardness of GaSe, scholars have done a lot of doping research, which could reveal that both the hardness of GaSe crystal and optical performance improved by doping. In terms of two-dimensional GaSe, although two-dimensional GaSe nanometer tablets have been prepared by various methods and good research results have been achieved in electronics, photoelectric devices and other aspects, such as ultraviolet and infrared high responsivity photodetectors, gas sensors, flexible optoelectronic devices and photoelectrochemical electrodes, etc. It is still difficult to obtain two-dimensional GaSe materials with high quality, large size and controllable thickness.
Firstly this article briefly introduces the structure and properties of GaSe. Then, the preparation of GaSe materials, doping research, mid-far infrared and terahertz (THz) band applications, and research progress in the fields of electronic devices and optoelectronic devices are reviewed from the two aspects of GaSe bulk and two-dimensional materials. Finally, the future research and application of GaSe are prospected.
Key words:  mid-far infrared    GaSe    nonlinear optical crystal    optoelectronic device    two-dimensional material
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  O782  
  TN29  
基金资助: 教育部春晖计划项目(12201519);四川省科技厅项目(13201657)
通讯作者:  Jinry@mail.xhu.edu.cn   
作者简介:  杜辉,2018年毕业于西华大学微电子科学与工程专业,获得工学学士学位。现为西华大学材料科学与工程学院硕士研究生,师承金应荣研究员和贺毅教授,主要从事光电材料、GaSe单晶生长的研究。
金应荣,西华大学材料科学与工程学院研究员,硕士研究生导师。1985年毕业于重庆大学,获得学士学位;1988年毕业于哈尔滨工业大学,获得硕士学位;2002年毕业于四川大学,获得博士学位。主要从事光电子材料与器件和半导体材料与器件方面的研究工作。
20080191-20080191-
引用本文:    
杜辉, 陈巧, 刘婷, 贺毅, 金应荣. 非线性晶体和光电材料硒化镓的研究进展[J]. 材料导报, 2022, 36(5): 20080191-10.
DU Hui, CHEN Qiao, LIU Ting, HE Yi, JIN Yingrong. Research Progress of Nonlinear Crystal and Optoelectronic Material GaSe. Materials Reports, 2022, 36(5): 20080191-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080191  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20080191
1 Jia N, Wang S P, Tao X T. Acta Physica Sinica, 2018, 67(24),7(in Chinese).
贾宁, 王善朋, 陶绪堂. 物理学报, 2018, 67(24), 7.
2 Yang C H, Ma T H, Zhu C Q, et al. Journal of the Chinese Ceramic Society, 2017, 45(10), 1402(in Chinese).
杨春晖, 马天慧, 朱崇强, 等. 硅酸盐学报, 2017, 45(10), 1402.
3 Yang D H, Zhao B J, Chen B J, et al. Materials Science in Semiconductor Processing, 2017, 67, 147.
4 Liu G Y, Chen Y, Yao B Q, et al. Applied Physics B-Lasers and Optics, 2019, 12(125), 233.
5 Zhao B J, Zhu S F, He Z Y, et al. Journal of Synthetic Crystals, 2012, 41(2), 4(in Chinese).
赵北君, 朱世富, 何知宇, 等. 人工晶体学报, 2012, 41(2), 4.
6 Huang W J, Gan L, Li H Q, et al. Royal Society of Chemistry, 2016, 18(22), 3968.
7 Novoselov K S, Geim A K, Morozov S V, et al. Nature, 2005, 438, 197.
8 Terhell J M. Materials Research Bulletin,1975, 10, 577.
9 Fernelius N C. Crystal Growth and Charact,1994, 28, 275.
10 Ueno K, Abe H, Saiki K, et al. Japanese Journal of Applied Physics, 1991, 30, 1352.
11 Singh N B, Suhre D R,Balakrishna V, et al. Progress in Crystal Growth and Characterization of Materials, 1998, 37(1), 47.
12 Guseinov G D, Rasulov A I. Physica Status Solidi, 1966, 18, 911.
13 Aliev G N, Kerimov I G, Kurbanov M M, et al. Soviet Physics Solid State, 1972, 14, 1304.
14 Manfredotti C, Murri R, Vasanelli L. Nuclear Instruments and Methods, 1974, 115, 349.
15 Minder R, Ottaviani G, Canali C. Journal of Physics and Chemistry of Solids, 1976, 37, 417.
16 Abdullaev G B, Kulevskii L A, Prokhorov A M, et al. JETP Letters, 1972, 16, 90.
17 Zhu C Q, Lei Z T, Song L C, et al. Journal of Crystal Growth, 2015, 421, 53.
18 Gilles P W. Journal of the American Chemical Society, 1964, 86(24), 5702.
19 Valeriy G V, Olga V V, Svetlana A B, et al. Optical Materials, 2004, 26, 495.
20 Ni Y B, WuH X, Huang C B, et al. Journal of Crystal Growth,2013, 381, 10.
21 Kokh K A, Andreev Y M, Svetlichnyi V A, et al.Crystal Research and Tecnology, 2011, 46, 327.
22 Abdullah M M, Bhagavan G, Wahab M A. Journal of Crystal Growth, 2010, 312, 1534.
23 SinghN B, Narayanan R, Zhao A X, et al. Materials Science and Engineering B, 1997 (49), 243.
24 Ma T H, Zhu C Q, Lei Z T. Journal of the Chinese Ceramic Society, 2020, 48(2), 182.
25 Lei N, Sato Y, Tanabe T, et al. Journal of Crystal Growth, 2017, 460, 94.
26 Huang C B, Ni Y B, Wu H X, et al. Journal of Inorganic Materials, 2014, 29(5), 557.
27 Andreev Y M, Atuchin V V, Lanskii G V, et al. Materials Science and Engineering B, 2006, 128, 205.
28 Huang J G, Huang Z M, Tong J C, et al. Applied Physics Letters, 2013, 103(8), 081104.
29 Bereznaya S A, Korotchenko Z V, Redkin R A, et al. Journal of Optics, 2017, 19, 115503.
30 Feng Z S, Kang Z H, Wu F G, et al. OpticsExpress, 2008, 16(13), 9978.
31 Suhre D R, Singh N B, Balakrishna V, et al. Optics Letters, 1997, 22(11), 775.
32 Kang Z H, Guo J, Feng Z S, et al. Applied Physics B, 2012, 108(3), 545.
33 Zhang Y F, Wang R, Kang Z H, et al. Optics Communications, 2011, 284, 1677.
34 Huang C B, Mao M S, Wu H X, et al. Journal of Crystal Growth, 2018, 483, 318.
35 Hsu Y K, Chang C S, Hsieh W F. Japanese Journal of Applied Physics, 2003, 42(7A),4222.
36 Borisenko E B, Timonina A V, Borisenko D N, et al. Journal of Crystal Growth, 2018, 496, 64.
37 Hüseyin E, Mustafa Y, Ahmet K, et al. Chinese Journal of Physics, 2019, 59, 465.
38 Ahmet K, Mustafa Y, Hüseyin E, et al. Optics and Laser Technology, 2018, 99, 392.
39 Hüseyin E. Optical Materials, 2018, 83, 99.
40 Singh N B,Suhre D R,Rosch W, et al. Journal of CrystalGrowth,1999, 19, 588.
41 Guo J, Xie J J,Li D J, et al. Light: Science & Applications, 2015, 4, e362.
42 Guo J, Xie J J, Zhang L M, et al. Cryst Eng Common, 2013, 15, 6323.
43 Li J S, Yao J Q, Xu X Y, et al. Acta Photonica Sinica, 2010, 8, 1491.
44 Rao Z M, Wang X B, Lu Y Z. Optics Communications, 2011, 284, 5472.
45 Yan D X,Xu D G, Wang Y Y, et al. Laser Physics, 2018, 28, 126205.
46 Nie J Q, Zhao H, Zhang Y. Laser & Optoelectronics Progress, 2020, 57(7), 73001(in Chinese).
聂佳琪,赵欢,张岩. 激光与光电子进展,2020, 57(7), 73001.
47 Badikov D V, Badikov V V, Ionin A A, et al. Opt Quant Electron, 2018, 50, 243.
48 Sato Y, Tang C, Watanabe K, et al. Optics Express,2020,1(28),472.
49 Jung C S, Shojaei F, Park K, et al. ACS Nano, 2015, 9(10), 9585.
50 Cai H, Gu Y Y, Lin Y C, et al. Applied Physics Reviews, 2019, 6(4), 041312.
51 Hu P A, Wen Z Z, Wang L F, et al. American Chemical Society Nano, 2012, 6(7), 5988.
52 Nicolosi V, Chhowalla M, Kanatzidis G M, et al. Science, 2013, 340(6139), 1226419.
53 Chen G L, Zhang L, Li L Y, et al. Journal of Alloys and Compounds, 2020, 823, 153697.
54 Li X F, Lin M W, Puretzky A A,et al. Scientific Reports, 2014, 4(1), 5497.
55 Tan L L, Liu Q B, Ding Y F, et al. Nano Research, 2020, 13(2), 557.
56 Kojima N, Sato K, Yamada A. Japanese Journal of Applied Physics, 2014, 33(10B), 1482.
57 Lee C H, Krishnamoorthy S, O'Hara D J, et al. Journal of Applied Physics, 2017, 121(9), 094302.
58 Chen M W, Kim H, Ovchinnikov D, et al. NPJ 2D Materials and Applications, 2018, 2.
59 Masoud M S, Gresback R, Tian M K, et al. Advanced Functional Mate-rials, 2014, 24, 6365.
60 Wang T,Li J,Zhao Q H, et al. Materials, 2018, 11(2), 186.
61 Sorifi S, Moun M, Kaushik S, et al. ACS Applied Electronic Materials,2020, 3(2), 670.
62 Xing X, Zhang Q, Zhou X, et al. Journal of Materials Chemistry C, 2016, 4(33), 142024.
63 Abderrahmane A, Jung P G,Kim N H, et al. Optical Materials Express, 2017, 7(2), 587.
64 Ko P J, Abderrahmane A, Takamura T, et al. Nanotechnology, 2016, 27(32), 325202.
65 Yuan X, Tang L, Liu S S, et al. Nano Letters, 2015, 5(15), 3571.
66 Waser R, Aono M. Nature Materials, 2007, 6, 833.
67 Cheng P, Sun K, Hu Y H, et al. Nano Letters, 2016, 16(1), 572.
68 Zhao Y F, Fuh H R, Coileáin C , et al. Advanced Materials Technologies, 2020, 5(4), 1901085.
69 Arora H, Jung Y H, Venanzi T, et al. ACS Applied Materials & Interfaces, 2019, 46(11), 43480.
70 Wang Z L. Advanced Materials, 2012, 24(34), 4632.
71 Wu W Z, Wang Z L. Nature Reviews Materials, 2016, 1(7), 16031.
72 Jia T H,Fuh H R,Chen D Y, et al.Advanced Electronic Materials, 2018, 4(4), 1700447.
73 Zappia M I, Bianca G, Bellani S, et al. Advanced Functional Materials, 2020, 30(10), 1909572.
74 Lv Q S, Yan F G, Wei X, et al. Advanced Optical Materials, 2017, 6(2), 1700490.
75 Wu Q, Wei W, Li F P, et al. Journal of Physics D: Applied Physics, 2019, 52(33), 054128.
76 Chen J H, He X J, Sa B S, et al. Nanoscale, 2019, 11(13), 6431.
77 Zhou X, Cheng J X, Zhou Y B, et al. Journal of the American Chemical Society, 2015, 137(25), 7994.
78 Gan X T, Zhao C Y, Hu S Q, et al. Light: Science & Applications, 2018, 7, 17126.
79 Fang L, Yuan Q C, Fang H L, et al. Advanced Optical Materials, 2018, 6(22), 1800698.
80 Jiang B Q, Hao Z, Ji Y F, et al. Light:Science & Applications,2020, 9(1), 63.
81 Zhang W, Bai H L, Guo L P, et al. Infrared Physics & Technology, 2020, 105, 103208.
82 Ma Q, Ge S L, Li M X, et al. Infrared Physics & Technology, 2020, 105, 103251.
[1] 李慧娟, 刘诗斌, 冯晴亮. 基于二维层状半导体材料的电化学传感器性能研究及应用进展[J]. 材料导报, 2022, 36(1): 20080298-10.
[2] 刘晓刚, 孙红, 刘林聪. 二维材料在摩擦机理和润滑应用方面的研究进展[J]. 材料导报, 2021, 35(z2): 33-37.
[3] 陈立杭, 张绫芷, 沈彩, 刘兆平. AFM峰值力轻敲模式下石墨烯与迈科烯结构稳定性的比较[J]. 材料导报, 2021, 35(22): 22006-22010.
[4] 李彬, 李娜, 黄一凡, 王强, 张晓东. 单粒子效应的激光模拟方法研究进展[J]. 材料导报, 2021, 35(21): 21195-21201.
[5] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[6] 杨晨, 高凤雨, 唐晓龙, 易红宏, 苗磊磊, 于庆君, 赵顺征. 二维材料的合成方法及在催化领域应用的研究进展[J]. 材料导报, 2020, 34(13): 13005-13016.
[7] 曹明星, 马立文, 王志宏. 碲属线性巨磁阻材料研究进展[J]. 材料导报, 2020, 34(13): 13131-13138.
[8] 王磊, 王党会, 肖美霞. 磷酸双乙酸胍分子中基团间作用的量子化学从头算研究[J]. 材料导报, 2019, 33(20): 3508-3511.
[9] 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537.
[10] 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展*[J]. CLDB, 2017, 31(9): 1-14.
[11] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[12] 王慧德, 范涛健, 谢中建, 张晗. 二维黑磷的制备及光电器件研究进展*[J]. CLDB, 2017, 31(9): 45-49.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed