Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 26-35    https://doi.org/10.11896/j.issn.1005-023X.2017.09.003
  专题栏目:二维材料 |
超级电容器中的二维材料
唐捷1, 2, 华青松1, 元金石2, 张健敏1, 赵玉玲1
1 青岛大学物理科学学院,青岛266071;
2 日本国立材料研究所,筑波307-0047;
3 青岛大学机电工程学院,青岛266071
Two-dimensional Materials for Supercapacitors
TANG Jie1, 2, HUA Qingsong1, YUAN Jinshi2, ZHANG Jianmin1, ZHAO Yuling1
1 School of Physical Sciences, Qingdao University, Qingdao 266071;
2 National Institute for Materials Science, Tsukuba 307-0047;
3 School of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071
下载:  全 文 ( PDF ) ( 2806KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以石墨烯为代表的具有层状结构的二维材料因具有大比表面积等特性成为超级电容器电极材料的热门候选。文章着眼于针对诸如石墨烯、过渡金属二硫族化合物、过渡金属碳/氮化物、层状过渡金属氧化物/氢氧化物等二维材料在超级电容器领域应用的研究,尝试总结了其制备方法、产物形貌特征以及作为电极的性能等,并对这一领域的未来发展和面临的挑战提出了看法与预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐捷
华青松
元金石
张健敏
赵玉玲
关键词:  超级电容器  双电层电容  器赝电容电容器  二维材料  石墨烯  过渡金属二硫族化合物(TMDCs)  过渡金属碳/氮化物 (MXenes)  层状过渡金属氧化物(TMOs)  层状过渡金属氢氧化物(TMHs)    
Abstract: Two-dimensional materials such as graphene has become a promising candidate for electrode materials of supercapacitors due to their excellent properties, especially high specific surface area. This article summarizes the research in this area, including 2D materials such asgraphene, transition metal dichalcogenides, transition metal carbides/nitrides/carbonitrides, layered transition metal oxides/hydroxides, from the perspectives of producing methods, product properties, and performance of electrodes based on these materials. It also indicates and predicts the future and challenges of the use ofthese new emerging materials insupercapacitors.
Key words:  supercapacitor    electric double-layer capacitor    pseudocapacitor    two-dimensional material    graphene    transition metal dichalcogenides (TMDCs)    transition metal carbides/nitrides/carbonitrides (MXenes)    transition metal oxides (TMOs)    transition metal hydroxides (TMHs)
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB34  
作者简介:  唐捷:教授,博士研究生导师,主要研究方向覆盖低维纳米材料的制备、构造表征及纳米器件开发等领域,特别是储能材料及新型纳米构造分析仪器方面的基础与应用 E-mail:tangjie@qdu.edu.cn
引用本文:    
唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
TANG Jie, HUA Qingsong, YUAN Jinshi, ZHANG Jianmin, ZHAO Yuling. Two-dimensional Materials for Supercapacitors. Materials Reports, 2017, 31(9): 26-35.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.003  或          http://www.mater-rep.com/CN/Y2017/V31/I9/26
[1] Conway B E.Electrochemical supercapacitors: Scientific fundamentals and technological applications [M]. New York: Plenum Press,1999.
[2] Lu M, Beguin F, Frackowiak E.Supercapacitors: Materials, systems and applications[M]. New York: Wiley-VCH,2013.
[3] Kötz R, Carlen M.Principles and applications of electrochemical capacitors[J]. Electrochim Acta,2000,45(15-16):2483.
[4] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666.
[5] Stoller M D, Park S, Zhu Y, et al.Graphene-based ultracapacitors[J]. Nano Lett,2008,8(10):3498.
[6] Acerce M, Voiry D, Chhowalla M.Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nat Nanotechnol,2015,10(4):313.
[7] Ratha S, Rout C S.Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method[J]. ACS Appl Mater Interfaces,2014,5(21):11427.
[8] Feng J, Sun X, Wu C, et al.Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors[J]. J Am Chem Soc,2011,133(44):17832.
[9] Wu Z S, Wang D W, Ren W, et al.Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[J]. Adv Funct Mater,2010,20(20):3595.
[10] Li Z, Mi Y, Liu X, et al.Flexible graphene/MnO2 composite papers for supercapacitor electrodes[J]. J Mater Chem,2011,21(38):14706-11.
[11] Wang L, Lin C, Zhang F, et al.Phase transformation guided single-layer β-Co(OH)2 nanosheets for pseudocapacitive electrodes[J]. ACS Nano,2014,8(4):3724.
[12] Naguib M, Mochalin V N, Barsoum M W, et al.25th Anniversary Article: MXenes: A new family of two-dimensional materials[J]. Adv Mater,2014,26(7):992.
[13] Xia J, Chen F, Li J, et al.Measurement of the quantum capacitance of graphene[J]. Nat Nanotechnol,2009,4(8):505.
[14] El-Kady M F, Shao Y, Kaner R B. Graphene for batteries, supercapacitors and beyond[J]. Nat Rev Mater,2016,1:16033.
[15] Gambhir S, Jalili R, Officer D L, et al.Chemically converted graphene: Scalable chemistries to enable processing and fabrication[J]. NPG Asia Mater,2015,7(6):e186.
[16] Hernandez Y, Nicolosi V, Lotya M, et al.High yield production of graphene by liquid phase exfoliation of graphite[J]. Nat Nanotech-nol,2008,3(9):563.
[17] Stankovich S, Dikin D A, Piner R D, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558.
[18] Liu C, Yu Z, Neff D, et al.Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Lett,2010,10(12):4863.
[19] Zhu Y, Murali S, Stoller M D, et al.Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537.
[20] Wissler M.Graphite and carbon powders for electrochemical applications[J]. J Power Sources,2006,156(2):142.
[21] Fan Z, Zhao Q, Li T, et al.Easy synthesis of porous graphene nanosheets and their use in supercapacitors[J]. Carbon,2012,50(4):1699.
[22] Oh Y J, Yoo J J, Yong I K, et al.Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor[J]. Electrochim Acta,2014,116(2):118.
[23] Park S, Ruoff R S.Chemical methods for the production of graphenes[J]. Nat Nanotechnol,2010,4(4):217.
[24] Allen M J, Tung V C, Kaner R B.Honeycomb carbon: A review of graphene[J]. Chem Rev,2010,110(1):132.
[25] Wassei J K, Kaner R B.Oh, the places you'll go with graphene[J]. Acc Chem Res,2013,46(10):2244.
[26] Chua C K, Pumera M.Chemical reduction of graphene oxide: A synthetic chemistry viewpoint[J]. Chem Soc Rev,2013,43(1):291.
[27] Pei S, Cheng H M.The reduction of graphene oxide[J]. Carbon,2012,50(9):3210.
[28] Ke Q, Wang J.Graphene-based materials for supercapacitor electrodes — A review[J]. J Materiomics,2016,2(1):37.
[29] Hummers W S, Offeman R E.Preparation of graphitic oxide[J]. J Am Chem Soc,1958,80(6):1339.
[30] Kovtyukhova N I, Ollivier P J, Martin B R, et al.Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem Mater,1999,11(3):771.
[31] Marcano D C, Kosynkin D V, Berlin J M, et al.Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806.
[32] Wang Y, Shi Z, Yu J, et al.Tailoring the characteristics of graphite oxide nanosheets for the production of high-performance poly(vinyl alcohol) composites[J]. Carbon,2012,50(15):5525.
[33] Ogino I, Yokoyama Y, Iwamura S, et al.Exfoliation of graphite oxide in water without sonication: Bridging length scales from nanosheets to macroscopic materials[J]. Chem Mater,2014,26(10):3334.
[34] Stankovich S, Piner R D, Nguyen S T, et al.Synthesis and exfolia-tion of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342.
[35] Jalili R, Aboutalebi S H, Esrafilzadeh D, et al.Organic solvent-based graphene oxide liquid crystals: A facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures[J]. ACS Nano,2013,7(5):3981.
[36] Kauppila J, Kunnas P, Damlin P, et al.Electrochemical reduction of graphene oxide films in aqueous and organic solutions[J]. Electrochim Acta,2013,89:84.
[37] Akhavan O, Ghaderi E.Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation[J]. J Phys Chem C,2009,113(47):20214.
[38] schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. J Phys Chem B,2006,110(17):8535.
[39] Chen H, Müller M B, Gilmore K J, et al.Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Adv Mater,2008,20(18):3557.
[40] Li D, Müller M B, Gilje S, et al.Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol,2008,3(2):101.
[41] Tung V C, Allen M J, Yang Y, et al.High-throughput solution processing of large-scale graphene[J]. Nat Nanotechnol,2009,4(1):25.
[42] Pham V H, Dang T T, Cuong T V, et al.Synthesis of highly concentrated suspension of chemically converted graphene in organic solvents: Effect of temperature on the extent of reduction and disper-sibility[J]. Korean J Chem Eng,2012,29(5):680.
[43] Chen W, Yan L, Bangal P R.Chemical reduction of graphene oxide to graphene by sulfur-containing compounds[J]. J Phys Chem C,2011,114(47):19885.
[44] Moon I K, Lee J, Ruoff R S, et al.Reduced graphene oxide by chemical graphitization[J]. Nat Commun,2010,1:73.
[45] Pham V H, Hur S H, Kim E J, et al.Highly efficient reduction of graphene oxide using ammonia borane[J]. Chem Commun,2013,49(59):6665.
[46] Kim H-K, Bak S-M, Lee S W, et al.Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications[J]. Energy Environ Sci,2016,9(4):1270.
[47] Cheng Q, Tang J, Ma J, et al.Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density[J]. Phys Chem Chem Phys,2011,13(39):17615.
[48] Zhang F, Tang J, Shinya N, et al.Hybrid graphene electrodes for supercapacitors of high energy density[J]. Chem Phys Lett,2013,584(12):124.
[49] Wu Z S, Winter A, Chen L, et al.Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J]. Adv Mater,2012,24(37):5130.
[50] Chen J, Sheng K, Luo P, et al.Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors[J]. Adv Mater,2012,24(33):4569.
[51] Shao Q, Tang J, Lin Y, et al.Synthesis and characterization of graphene hollow spheres for application in supercapacitors[J]. J Mater Chem A,2013,1(48):15423.
[52] Vatamanu J, Bedrov D.Capacitive energy storage: Current and future challenges[J]. J Phys Chem Lett,2015,6(18):3594.
[53] Randin J P, Yeager E.Differential capacitance study of stress-annealed pyrolytic graphite electrodes[J]. J Electrochem Soc,1971,118:711.
[54] Tang M, Miyazaki K, Abe T, et al.Effect of graphite orientation and lithium salt on electronic passivation of highly oriented pyrolytic graphite[J]. J Electrochem Soc,2012,159(5):A634.
[55] Pak A J, Paek E, Hwang G S.Impact of graphene edges on enhancing the performance of electrochemical double layer capacitors[J]. J Phys Chem C,2014,118(38):21770.
[56] Ho T A, Striolo A.Polarizability effects in molecular dynamics simulations of the graphene-water interface[J]. J Chem Phys,2013,138(5):054117.
[57] Xing L, Vatamanu J, Smith G D, et al.Nanopatterning of electrode surfaces as a potential route to improve the energy density of electric double-layer capacitors: insight from molecular simulations[J]. J Phys Chem Lett,2012,3(9):1124.
[58] Costa R, Pereira C M, Silva A F.Charge storage on ionic liquid electric double layer: The role of the electrode material[J]. Electrochim Acta, 2015, 167: 421.
[59] Vatamanu J, Hu Z, Bedrov D, et al.Increasing energy storage in electrochemical capacitors with ionic liquid electrolytes and nanostructured carbon electrodes[J]. J Phys Chem Lett,2013,4(17):2829.
[60] Feng G, Jiang D E, Cummings P T.Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces[J]. J Chem Theor Comput,2012,8(3):1058.
[61] Wang Q H, Kalantarzadeh K, Kis A, et al.Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol,2012,7(11):699.
[62] Kumar P, Abuhimd H, Wahyudi W, et al.Two-dimensional layered materials for energy storage applications[J]. ESC J Solid State Sci Technol,2016,5(11):Q3021.
[63] Sahoo R, Pal A, Pal T.2D materials for renewable energy storage devices: Outlook and challenges[J]. Chem Commun,2016,52(93):13528.
[64] Cao L, Yang S, Gao W, et al.Direct laser-patterned micro-supercapacitors from paintable MoS2 films[J]. Small,2013,9(17):2905.
[65] Bissett M A, Worrall S D, Kinloch I A, et al.Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors[J]. Electrochim Acta,2016,201:30.
[66] Balasingam S K, Lee J S, Jun Y.Molybdenum diselenide/reduced graphene oxide based hybrid nanosheets for supercapacitor applications[J]. Dalton Trans,2016,45(23):9646.
[67] Clerici F, Fontana M, Bianco S, et al.In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Appl Mater Interfaces,2016,8(16):10459.
[68] Naguib M, Kurtoglu M, Presser V, et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater,2011,23(37):4248.
[69] Naguib M, Mashtalir O, Carle J, et al.Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322.
[70] Zhu J, Tang Y, Yang C, et al.Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance[J]. J Electrochem Soc,2016,163(5):A785.
[71] Zheng J P, Cygan P J, Jow T R.Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. J Electrochem Soc,1995,142(8):2699.
[72] Zheng J P, Jow T R.A new charge storage mechanism for electrochemical capacitors[J]. J Electrochem Soc,1995,142(1):L6.
[73] Jow T R, Zheng J P.Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide[J]. J Electrochem Soc,1998,145(1):49.
[74] Kim I-H, Kim K-B.Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications[J]. J Electrochem Soc,2006,153(2):A383.
[75] Sato Y, Yomogida K, Nanaumi T, et al.Electrochemical behavior of activated-carbon capacitor materials loaded with ruthenium oxide[J]. Electrochem Solid-State Lett,2000,3(3):113.
[76] Miller J M, Dunn B.Morphology and electrochemistry of ruthe-nium/carbon aerogel nanostructures[J]. Langmuir,1999,15(3):799.
[77] Yang Y, Liang Y, Zhang Y, et al.Three-dimensional graphene hydrogel supported ultrafine RuO2 nanoparticles for supercapacitor electrodes[J]. New J Chem,2015,39(5):4035.
[78] Zhang C, Zhou H, Yu X, et al.Synthesis of RuO2 decorated quasi graphene nanosheets and their application in supercapacitors[J]. RSC Adv,2014,4(22):11197.
[79] Lee H Y, Goodenough J B.Supercapacitor behavior with KCl electrolyte[J]. J Solid State Chem,1999,144(1):220.
[80] Wei W, Cui X, Chen W, et al.Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chem Soc Rev,2011,40(3):1697.
[81] Wu Z S, Ren W, Wang D W, et al.High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS Nano,2010,4(10):5835.
[82] Lee H, Kang J, Cho M S, et al.MnO2/graphene composite electrodes for supercapacitors: The effect of graphene intercalation on capacitance[J]. J Mater Chem,2011,21(45):18215.
[83] Cheng Q, Tang J, Ma J, et al.Graphene and nanostructured MnO2 composite electrodes for supercapacitors[J]. Carbon,2011,49(9):2917.
[84] Yu N, Yin H, Zhang W, et al.High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics[J]. Adv Energy Mater,2016,6(2):1501458.
[85] Cao L, Xu F, Liang Y Y, et al.Preparation of the novel nanocomposite Co(OH)2/ ultra-stable Y-zeolite and its application as a supercapacitor with high energy density[J]. Adv Mater,2004,16(20):1853.
[86] Chen S, Zhu J, Wang X.One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties[J]. J Phys Chem C,2010,114(27):11829.
[87] Zhao C, Zheng W, Wang X, et al.Ultrahigh capacitive performance from both Co(OH)2/graphene electrode and K3Fe(CN)6 electrolyte[J]. Sci Rep,2013,3(10):2986.
[88] Schneiderova B, Demel J, et al.Electrochemical perfor-mance of cobalt hydroxide nanosheets formed by the delamination of layered cobalt hydroxide in water[J]. Dalton Trans,2014,43(27):10484.
[89] Xia X H, Tu J P, Zhang Y Q, et al.Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: A pseudocapacitive material with superior performance[J]. J Phys Chem C,2011,115(45):22662.
[90] Ghidiu M, Lukatskaya M R, Zhao M Q, et al.Conductive two-dimensional titanium carbide ‘clay' with high volumetric capacitance[J]. Nature,2014,516(7529):78.
[1] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[2] 莫若飞, 杨玉婷, 潘可, 赵立春. 石墨烯及其衍生物在中医药领域中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 58-62.
[3] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[4] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[5] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[6] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[7] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[8] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[9] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[10] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[11] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[12] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[13] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[14] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[15] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed