Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060047-8    https://doi.org/10.11896/cldb.22060047
  无机非金属及其复合材料 |
石墨烯的分散方法及在水性环氧富锌涂料中的应用进展
桂晓露1,*, 程瑄1, 李芃飞1, 高古辉1, 孙丽娅2, 易汉平2
1 北京交通大学机械与电子控制工程学院,材料中心,北京 100044
2 鄂尔多斯市紫荆创新研究院,内蒙古 鄂尔多斯 017000
A Review of Dispersion Methods of Graphene and Its Applications in Waterborne Epoxy Zinc-rich Coatings
GUI Xiaolu1,*, CHENG Xuan1, LI Pengfei1, GAO Guhui1, SUN Liya2, YI Hanping2
1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2 Redbud Innovation Institute of Erdos, Ordos 017000, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 12847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯具有高的比表面积、高的机械强度、优异的导热和导电性、低的化学反应活性、良好的物理阻隔性能等特性,在提升涂料/涂层防腐性能方面具有很大的潜力,因而受到了广泛关注,石墨烯水性环氧富锌涂料是其中的研究热点。但是,石墨烯较大的比表面积及层间范德华力的相互作用导致其在水性溶剂或聚合物基体中极易发生团聚,直接影响了其在水性涂料/涂层中性能的发挥。因此,如何改善石墨烯在水性溶剂或聚合物基体中的分散性是待解决的首要问题。本文综述了石墨烯在水性环氧富锌涂料中的研究进展,对比讨论了单一或多种分散方法对石墨烯在水性涂料特别是水性环氧涂料中分散效果的影响规律及适用范围,对现有文献中石墨烯环氧富锌涂料的防腐性能进行了汇总,分析了石墨烯类型、含量及其与锌粉的相对比例对涂料/涂层性能的影响规律及选择原则。最后,本文介绍了石墨烯在提高涂层屏蔽性能及阴极保护方面的作用机理,并对石墨烯水性环氧富锌涂料在工业化制备和应用方面面临的挑战和未来研究方向进行了简要讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桂晓露
程瑄
李芃飞
高古辉
孙丽娅
易汉平
关键词:  石墨烯  腐蚀  水性环氧富锌涂料  防腐机理    
Abstract: Graphene has attracted attention as a substrate for anticorrosion coatings owing to its large specific surface area, low chemical reactivity, extraordinary mechanical, thermal, and electrical properties, and good physical barrier properties. Environmentally friendly graphene waterborne zinc-rich coatings are among the most attractive anticorrosion coatings. However, the large specific surface area of graphene and van der Waals interactions between layers usually result in an irreversibly agglomerated structure in water and common organic solvents, complicating their use and liquid phase processing and limiting their potential applications. Therefore, methods to improve the dispersion of graphene in water-based solvents or polymer matrices are required. This review primarily focuses on the role of graphene in waterborne epoxy zinc-rich coatings. First, the effects of dispersion on the dispersibility of graphene in water-based coatings, particularly water-based epoxy coatings, and their applicability are compared and discussed. Second, the anticorrosion properties of graphene epoxy zinc-rich coatings are summarized based on exi-sting literature. The effects of graphene type, content, and its relative ratio to zinc powder on the anticorrosion performance of coatings are discussed. Finally, other topics covering the fundamentals of protection mechanisms, performance evaluation, challenges, and future research directions on zinc-rich epoxy composite coatings are briefly discussed.
Key words:  graphene    corrosion    waterborne zinc-rich coating    anticorrosion mechanism
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TQ638  
基金资助: 内蒙古自治区科技重大专项(2020ZD0019)
通讯作者:  *桂晓露,北京交通大学实验师。2013年1月毕业于北京科技大学材料物理系,同年进入北京交通大学机电学院工作至今。主要从事石墨烯分散及水性涂料的开发工艺研究,在SCI和EI上发表论文20余篇。xlgui@bjtu.edu.cn   
引用本文:    
桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
GUI Xiaolu, CHENG Xuan, LI Pengfei, GAO Guhui, SUN Liya, YI Hanping. A Review of Dispersion Methods of Graphene and Its Applications in Waterborne Epoxy Zinc-rich Coatings. Materials Reports, 2024, 38(3): 22060047-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060047  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22060047
1 Ewa L, Małgorzata Z, Helena K, et al. Corrosion Engineering Science and Technology, 2019, 54(7), 627.
2 Kakaei M N, Danaee I, Zaarei D. Corrosion Engineering Science and Technology, 2013, 48(3), 194.
3 Shirehjini F T, Danaee I, Eskandari H, et al. Journal of Materials Science Technology, 2016, 32(11), 9.
4 Marchebois H, Savall C, Bernard J, et al. Electrochimica Acta, 2004, 49(17-18), 2945.
5 Cubides Y, Castaneda H. Corrosion Science, 2016, 109, 145.
6 Kalendová A, Vesely D, Kohl M, et al. Progress in Organic Coatings, 2015, 78, 1.
7 Böhm S. Nature Nanotechnology, 2014, 9, 741.
8 Sun W, Yang Y J, Yang Z Q, et al. Journal of Materials Science & Technology, 2021, 91, 278.
9 Vesna M K, Ivana J, Inhwa J, et al. Carbon, 2014, 75, 335.
10 Cheng L H, Liu C L, Han D J, et al. Journal of Alloys and Compounds, 2019, 774, 255.
11 Mu J, Gao F J, Cui G, et al. Progress in Organic Coatings, 2021, 157, 106321.
12 Compton O C, Kim S, Pierre C, et al. Advanced Materials, 2010, 22(42), 4759.
13 Kumar S S A, Bashir S, Ramesh K, et al. Progress in Organic Coatings, 2021, 154, 106215.
14 Ding R, Chen S, Lyu J, et al. Paint & Coatings Industry, 2019, 49(9), 66 (in Chinese).
丁锐, 陈思, 吕静, 等. 涂料工业, 2019, 49(9), 66.
15 Rajabi M, Rashed G R, Zaarei D. Corrosion Engineering Science and Technology, 2015, 50 (7), 509.
16 Thomas M M, Liliana D C, Sokolova A V, et al. Physical Chemistry Chemical Physics, 2018, 20, 16801.
17 Parviz D, Das S, Ahmed H, et al. ACS Nano, 2012, 6(10), 8857.
18 Yousefi A, Javadian S, Sharifi M, et al. Journal of Bio- and Tribo-Corrosion, 2019, 5, 82.
19 Wen J G, Geng W, Geng H Z, et al. ACS Omega, 2019, 4(23), 20265.
20 Wang H H, Qin S D, Yang X F, et al. Chemical Engineering Journal, 2018, 351, 939.
21 Zhao Q, Liu X, Veldhuis S, et al. Colloids and Surfaces A, 2020, 588, 124382.
22 Ding J H, Rahman O, Peng W J, et al. Applied Surface Science, 2018, 427, 981.
23 Wang S, Hu Z R, Shi J, et al. Applied Surface Science, 2019, 484, 759.
24 Su Q, Pang S P, Alijani V, et al. Advanced Material, 2009, 21, 3191.
25 Sham A, Notley S M. Soft Matter, 2013, 9(29), 6645.
26 Georgakilas V, Otyepka M, Bourlinos A B, et al. Chemical Reviews, 2012, 112(11), 6156.
27 Gu L, Liu S, Zhao H, et al. ACS Applied Materials & Interfaces, 2015, 7(32), 17641.
28 Qiu S H, Li W, Zheng W R, et al. ACS Applied Materials & Interfaces, 2019, 9, 34294.
29 Cui M J, Ren S M, Zhao H C, et al. Chemical Engineering Journal, 2018, 335, 255.
30 Li C H, He Y, Li Z J, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 635, 128048.
31 Wang X, Li C, Zhang M, et al. Chemical Engineering Journal, 2022, 430, 133156.
32 Zhong F, He Y, Wang P Q, et al. Applied Surface Science, 2019, 488, 801.
33 Baczoni A, Molnár F. Acta Polytechnica Hungarica, 2011, 8(5), 43.
34 Mka B, Ega C, Br B, et al. Journal of Industrial and Engineering Che-mistry, 2019, 73, 162.
35 Chen C L, He Y, Xiao G Q, et al. Journal of Materials Chemistry C, DOI:10.1039/C8TC06487C.
36 Zhang Z Y, Zhang W H, Li D S, et al. International Journal of Molecular Sciences, 2015, 16, 2239.
37 Lin Y A, Chen R R, Zhang Y J, et al. Chemical Engineering Journal, 2020, 383, 123203.
38 Zhou X N, Huang H W, Zhu R, et al. Progress in Organic Coatings, 2020, 143, 105601.
39 Ayan-Varela M, Paredes J I, Guardia L, et al. ACS Applied Materials & Interfaces, 2015, 7, 10293.
40 Tian Y Q, Xie Y H, Dai F, et al. Surface & Coatings Technology, 2020, 383, 125227.
41 Wang H R, Wang X, Zhao X Y, et al. Applied Chemical Industry, 2019, 48(1), 97 (in Chinese).
王慧茹, 王鑫, 赵雄燕, 等. 应用化工, 2019, 48(1), 97.
42 Wang H H, He Y, Fei G Q, et al. Chemical Engineering Journal, 2019, 359, 331.
43 Huang H W, Tian Y Q, Xie Y H, et al. Progress in Organic Coatings, 2020, 146, 105724.
44 Jiang F W, Zhao W J, Wu Y M, et al. Applied Surface Science, 2019, 479, 963.
45 Liu C B, Du P, Zhao H C, et al. ACS Applied Nano Materials, 2018, 1, 1385.
46 Cui M J, Ren S M, Zhao H C, et al. Chemical Engineering Journal, 2018, 335, 255.
47 Zhou X N, Huang H W, Zhu R, et al. Progress in Organic Coatings, 2019, 136, 105200.
48 Zhou C, Hong M, Yang Y, et al. Applied Surface Science, 2019, 484, 663.
49 Cui J C, Xiong Z, Qiu H X, et al. Composites Part A, 2021, 144, 106354.
50 Li J, Shan W W, Cui J C, et al. Journal of Coatings Technology and Research, 2020, 17 (1), 171.
51 Xiao F J, Qian C, Guo M Y, et al. Progress in Organic Coatings, 2018, 125, 79.
52 Zhu Q S, Li E, Liu X H, et al. Progress in Organic Coatings, 2020, 140, 105488.
53 Zhou T, Zhang J, Zhao J G, et al. Surface & Coatings Technology, 2021, 412, 127043.
54 Wang N, Fu W L, Zhang J, et al. Progress in Organic Coatings, 2015, 89, 114.
55 Wang N, Gao H Y, Zhang J, et al. Coatings, 2018, 8, 179.
56 Wang N, Wu Y H, Cheng K Q, et al. Materials and Corrosion, 2014, 65(10), 968.
57 Shen L, Zhao W J, Wang K, et al. Journal of Hazardous Materials, 2021, 417, 126048.
58 Zhu Q S, Zhang K, Huang Y X, et al. Journal of Nanostructure in Che-mistry, 2022, 12, 277.
59 Dhamodharan D, Dhinakaran V, Nagavaram R, et al. Journal of Industrial and Engineering Chemistry, 2022, 107, 165.
60 Wu Y M, Jiang F W, Qiang Y J, et al. Carbon, 2021, 176, 39.
61 Wang Q H, Wang X J, Fang J J, et al. Paint & Coatings Industry, 2016, 46(12), 42 (in Chinese).
王清海, 王秀娟, 方健君, 等. 涂料工业, 2016, 46(12), 42.
62 Xue P, Li W K, Hu X D, et al. Paint & Coatings Industry, 2017, 47(11), 59 (in Chinese).
薛鹏, 李文凯, 胡秀东, 等. 涂料工业, 2017, 47(11), 59.
63 Wang S C, Li X P. China Coatings, 2017, 32(2), 32 (in Chinese).
王书传, 李小平. 中国涂料, 2017, 32(2), 32.
64 Sun C L, Guan Y D. China Coatings, 2017, 32(2), 14 (in Chinese).
孙春龙, 关迎东. 中国涂料, 2017, 32(2), 14.
65 Jiang F W, Zhao W J, Wu Y M. Progress in Organic Coatings, 2019, 127, 70.
66 Zhang S. Preparation and properties studying of graphene/waterborne epoxy zinc rich coating. Master's Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
张松. 石墨烯/水性环氧富锌涂料的制备及性能研究. 硕士学位论文, 哈尔滨工业大学, 2017.
67 Chen Z H, Li Q, He C. Paint & Coatings Industry, 2019, 49(6), 35 (in Chinese).
陈中华, 李青, 何畅. 涂料工业, 2019, 49(6), 35.
68 Li Q. Preparation and study of properties of graphene and its oxides modified waterborne epoxy zinc-rich coatings. Master's Thesis, South China University of Technology, China, 2019 (in Chinese).
李青. 石墨烯及其氧化物改性 环氧富锌涂料的制备及性能研究. 硕士学位论文, 华南理工大学, 2019.
69 Teng S, Cao F L, Gao Y, et al. Shandong Chemical Industry, 2018, 47 (8), 9 (in Chinese).
滕帅, 曹凤丽, 高扬, 等. 山东化工, 2018, 47(8), 9.
70 Wang X C, Li X J, Guo H, et al. Corrosion & Protection, 2019, 40(12), 907 (in Chinese).
王新潮, 李秀娟, 郭辉, 等. 腐蚀与防护, 2019, 40(12), 907.
71 Xia W L, Yang X, Han X X. China Coatings, 2019, 34(6), 43 (in Chinese).
夏文丽, 杨霞, 韩秀秀. 中国涂料, 2019, 34(6), 43.
72 Shi J F, Han Z Z, Cui C C, et al. Coating and Protection, 2021, 42(1), 24 (in Chinese).
石家烽, 韩忠智, 崔灿灿, 等. 涂层与防护, 2021, 42(1), 24.
73 Bai W C, Ma Y T, Meng M J, et al. Progress in Organic Coatings, 2021, 161, 106456.
74 Cao X K. The anticorrosive performances and mechanism investigation of zinc-rich coating with graphene nanoplates modified. Master's Thesis, Wuhan University of Science and Technology, China, 2019 (in Chinese).
曹祥康. 石墨烯纳米片/环氧富锌复合涂层防腐性能及机理研究. 硕士学位论文, 武汉科技大学, 2019.
75 Huang S Y. Preparation and study of properties of graphene/waterborne epoxy zinc-rich coatings. Master's Thesis, South China University of Technology, China, 2020 (in Chinese).
黄仕珏. 石墨烯/水性环氧富锌涂层的制备及其性能研究. 硕士学位论文, 华南理工大学, 2020.
76 Ding R, Wang X, Jiang J M, et al. Journal of Materials Engineering and Performance, 2017, 26, 3319.
77 Andrej N, Nathalie L B, Dominique T. Progress in Organic Coatings, 2018, 215, 61.
78 Song Z, Bei Q. Materials and Corrosion, 2018, 69, 1810312.
79 Ding R, Chen S, Zhou N, et al. Journal of Alloys and Compounds, 2019, 784, 756.
80 Xiao F J, Qian C, Guo M Y, et al. Progress in Organic Coatings, 2018, 125, 79.
81 Wang C Y, Qin Z H, Feng K, et al. Journal of Polymer Research, 2020, 27, 367.
82 Cui G, Zhang C C, Bi Z X, et al. Surface Technology, 2021, 50(2), 310 (in Chinese).
崔淦, 张楚楚, 毕真啸, 等. 表面技术, 2021, 50(2), 310.
83 Tian Y, Bi Z X, Cui G. Polymers, 2021, 13, 1657.
84 Teng S. Effect of reduced graphene oxide on corrosion resistance of zinc-rich epoxy coatings. Master's Thesis, Qingdao University, China, 2018 (in Chinese).
滕帅. 还原氧化石墨烯对富锌环氧涂层耐腐蚀性的影响研究. 硕士学位论文, 青岛大学, 2018.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[3] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[4] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[5] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[6] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[7] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[8] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[9] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[10] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[11] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[12] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[13] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[14] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[15] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed