Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22080114-11    https://doi.org/10.11896/cldb.22080114
  无机非金属及其复合材料 |
石墨烯纳米带的制备技术及应用研究现状
周新博, 付景顺, 苑泽伟*, 钟兵, 刘涛, 唐美玲
沈阳工业大学机械工程学院,沈阳 110870
Current Status of Preparation Technology and Application of Graphene Nanoribbons
ZHOU Xinbo, FU Jingshun, YUAN Zewei*, ZHONG Bing, LIU Tao, TANG Meiling
School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
下载:  全 文 ( PDF ) ( 34586KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯具有优异的力学、电学、光学、热学等物理性质,是当前新型材料的研究热点之一,被广泛应用在导电薄膜、储能元件、药物载体以及锂电池等领域。然而,石墨烯无带隙的特点限制其更广泛的应用,因此,通过技术手段打开石墨烯带隙成为学者们亟待解决的新问题。将石墨烯制成石墨烯纳米带(Graphene nanoribbons,GNRs)是打开其带隙的可行办法。因此,本文梳理了制备GNRs的不同方法,综述了其制备原理和研究进展,并对比了其优点和不足,提出了将不同方法的优点相互结合的复合制备方法,以实现可控、高效、高质量制备GNRs,最后介绍了GNRs在高性能传感器、场效应晶体管和光电探测器领域应用的研究进展和未来发展趋势。这对GNRs进一步应用在纳米器件中有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周新博
付景顺
苑泽伟
钟兵
刘涛
唐美玲
关键词:  石墨烯纳米带  剪裁  化学合成  传感器  场效应晶体管  光电探测器    
Abstract: Graphene has excellent mechanical, electrical, optical, thermal, and other physical properties, and it is a popular research subject in new materials. Graphene is used in conductive films, energy-storage devices, drug carriers, lithium batteries, and other fields. However, the characteristics of graphene material without a band gap limit its wider application, therefore, opening the graphene band gap through technical means has become a new problem to be solved. Making graphene into GNRs (graphene nanoribbons) is a feasible way to open its band gap, thus different methods of preparing GNRs are summarized in this paper. The preparation principle and research progress are reviewed, the advantages and disadvantages are compared, and a composite preparation method combining the advantages of different methods is proposed to realize the controllable, efficient, and high-quality preparation of GNRs. Finally, the research progress and future development trend of GNRs in high-performance sensors, field-effect transistors, and photodetectors are introduced. This research has certain guiding significance for the further application of GNRs in nano devices.
Key words:  graphene nanoribbon    tailoring    chemical synthesis    sensor    field effect transistor    photodetector
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TN389  
基金资助: 国家自然科学基金(52275455)
通讯作者:  *苑泽伟,沈阳工业大学机械工程学院教授、博士研究生导师。2005年郑州轻工业学院机械设计制造及其自动化专业本科毕业,2007年大连理工大学机械制造专业硕士毕业,2012年大连理工大学机械制造专业博士毕业。目前主要从事精密加工与特种加工技术、难加工材料的高效加工技术、高端装备关键零部件制造技术等方面的研究工作。发表论文40余篇,包括The International Journal of Advanced Manufacturing Technology、Materials and Manufacturing Processes、Chinese Journal of Mechanical Engineering等。zwyuan@aliyun.com   
作者简介:  周新博,2017年6月、2021年6月于沈阳工业大学获得工学学士学位和硕士学位。现为沈阳工业大学机械工程学院博士研究生,在苑泽伟教授的指导下进行研究。目前主要研究领域为微纳加工技术。
引用本文:    
周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
ZHOU Xinbo, FU Jingshun, YUAN Zewei, ZHONG Bing, LIU Tao, TANG Meiling. Current Status of Preparation Technology and Application of Graphene Nanoribbons. Materials Reports, 2024, 38(4): 22080114-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080114  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22080114
1 Wang L F, Zheng Q S. Applied Physics Letters, 2007, 90(15), 153113.
2 Li A, Zhou W, Xie M, et al. Diamond and Related Materials, 2021, 111, 108141.
3 Lee C, Wei X, Kysar J W, et al. Science, 2008, 321(5887), 385.
4 Nair R R, Blake P, Grigorenko A N, et al. Science, 2008, 320(5881), 1308.
5 Balandin A A, Ghosh S, Bao W, et al. Nano Letters, 2008, 8(3), 902.
6 Liu Y Q. Graphene: from basics to applications, Chemical Industry Press, China, 2017, pp. 14 (in Chinese).
刘云圻. 石墨烯从基础到应用, 化学工业出版社, 2017, pp. 14.
7 Olabi A G, Abdelkareem M A, Wilberforce T, et al. Renewable & Sustainable Energy Reviews, 2021, 135, 110026.
8 Zarei S, Hosseini Z, Sabetghadam S A, et al. The European Physical Journal Plus, 2021, 136(5), 515.
9 Eftekhar M, Raoufi F. Polycyclic Aromatic Compounds, 2022, 42(7), 4780.
10 Wang C, Xu J, Liu Y H, et al. Journal of China Pharmaceutical University, 2017, 48(1), 117(in Chinese).
王晨, 许军, 刘燕华, 等. 中国药科大学学报, 2017, 48(1), 117.
11 Neupane H K, Adhikari N P. Journal of Molecular Modeling, 2021, 27(3), 82.
12 Prabhakar S, Melnik R. Physica E: Low-dimensional Systems & Nanostructures, 2022, 142, 115267.
13 López-Sancho M P, Muñoz M C. Physical Review B, 2021, 104(24), 245402.
14 Zhang H, Cai X M, Hao Z L, et al. Acta Physica Sinica, 2017, 66(21), 209 (in Chinese).
张辉, 蔡晓明, 郝振亮, 等. 物理学报, 2017, 66(21), 209.
15 Zhang Y, Liu Q, Shao X, et al. Chinese Journal of Rare Metals, 2021, 45(9), 1119 (in Chinese).
张艳, 柳青, 邵旭, 等. 稀有金属, 2021, 45(9), 1119.
16 Padmanabhan N T, Thomas N, Louis J, et al. Chemosphere, 2021, 271, 129506.
17 Zheng Yun, Pan Zhiming, Wang Xinchen. Chinese Journal of Catalysis, 2013, 34(3), 524.
18 Hurum D C, Agrios A G, Gray K A, et al. The Journal of Physical Chemistry B, 2003, 107(19), 4545.
19 Tatsuma T, Tachibana S, Miwa T, et al. The Journal of Physical Chemistry B, 1999, 103(38), 8033.
20 Zhang L, Diao S, Nie Y, et al. Journal of the American Chemical Society, 2011, 133(8), 2706.
21 Wang Z, Li T, Schulte L, et al. ACS Applied Materials & Interfaces, 2016, 8(13), 8329.
22 Han H. Molecular dynamics simulation of photocatalytic auxiliary cutting of graphene. Master’s Thesis, Shenyang University of Technology, China, 2019 (in Chinese).
韩晖. 光催化辅助切割石墨烯的分子动力学模拟. 硕士学位论文, 沈阳工业大学, 2019.
23 Ma L, Wang J, Yip J, et al. The Journal of Physical Chemistry Letters, 2014, 5(7), 1192.
24 Lukas M, Meded V, Vijayaraghavan A, et al. Nature Communications, 2013, 4(1), 1379.
25 Datta S S, Strachan D R, Khamis S M, et al. Nano Letters, 2008, 8(7), 1912.
26 Zoberbier T, Chamberlain T W, Biskupek J, et al. Journal of the American Chemical Society, 2012, 134(6), 3073.
27 Ci L, Xu Z, Wang L, et al. Nano Research, 2008, 1, 116.
28 Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, et al. Nano Letters, 2009, 9(7), 2600.
29 Sang Y. Investigations on controlled nanocutting of graphene by metal nanoparticles. Ph. D. Thesis, University of Science and Technology of China, China, 2018 (in Chinese).
桑园. 金属颗粒纳米切割石墨烯的调控及其应用研究. 博士学位论文, 中国科学技术大学, 2018.
30 Fan P, Gao J, Mao H, et al. Micromachines, 2022, 13(2), 228.
31 Pingue P. Tip-based nanofabrication: fundamentals and applications, Springer, New York, USA, 2011, pp. 357.
32 Tseng A A, Notargiacomo A, Chen T P. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2005, 23(3), 877.
33 Puddy R K, Scard P H, Tyndall D, et al. Applied Physics Letters, 2011, 98(13), 133120.
34 Giesbers A J M, Zeitler U, Neubeck S, et al. Solid State Communications, 2008, 147(9-10), 366.
35 Zhang Y X, Peng Y T, Lang H J. Acta Physica Sinica, 2020, 69(10), 197 (in Chinese).
张玉响, 彭倚天, 郎浩杰. 物理学报, 2020, 69(10), 197.
36 Wang F Y. Femtosecond laser structuring of graphene oxide and its wettability modulation. Master’s Thesis, University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), China, 2021 (in Chinese).
王飞跃. 氧化石墨烯的飞秒激光结构化处理及其浸润性调控. 硕士学位论文, 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
37 Zhang W, Li L, Wang Z B, et al. Applied Physics A, 2012, 109, 291.
38 Lin Z, Ye X H, Han J P, et al. Chinese Journal of Lasers, 2015, 42(7), 93 (in Chinese).
林喆, 叶晓慧, 韩金鹏, 等. 中国激光, 2015, 42(7), 93.
39 Chen H Y, Han D, Tian Y, et al. Chemical Physics, 2014, 430, 13.
40 Wang K, Zhou Q P, Chen Z G, et al. New Carbon Materials, 2020, 35(6), 716 (in Chinese).
王锴, 周庆萍, 陈志刚, 等. 新型炭材料, 2020, 35(6), 716.
41 Matsui S, Ichihashi T, Mito M. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1989, 7(5), 1182.
42 Ni X, Kildishev A V, Shalaev V M. Nature Communications, 2013, 4(1), 2807.
43 Kim S, Dyck O, Ievlev A V, et al. Carbon, 2018, 138, 277.
44 Matsui K, Takei Y, Inaba A, et al. Micro & Nano Letters, 2016, 11(11), 670.
45 Bell D C, Lemme M C, Stern L A, et al. Nanotechnology, 2009, 20(45), 455301.
46 Fischbein M D, Drndić M. Applied Physics Letters, 2008, 93(11), 113107.
47 Abdol M A, Sadeghzadeh S, Jalaly M, et al. Scientific Reports, 2019, 9(1), 8127.
48 Xie X N, Chung H J, Sow C H, et al. Materials Science and Engineering R: Reports, 2006, 54(1-2), 1.
49 Tang X, Lai K W C. IEEE Transactions on Nanotechnology, 2016, 15(4), 607.
50 Liu L Q, Zhang Y, Xi N, et al. Scientia Sinica (Physica, Mechanica & Astronomica), 2012, 42(4), 358 (in Chinese).
刘连庆, 张嵛, 席宁, 等. 中国科学:物理学 力学 天文学, 2012, 42(4), 358.
51 Hu C L, Gao B, Zhou Y W. Journal of Functional Materials, 2018, 49(9), 9001 (in Chinese).
胡成龙, 高波, 周英伟. 功能材料, 2018, 49(9), 9001.
52 Yang X, Dou X, Rouhanipour A, et al. Journal of the American Chemical Society, 2008, 130(13), 4216.
53 Cai J, Ruffieux P, Jaafar R, et al. Nature, 2010, 466(7305), 470.
54 Chen Z, Wang H I, Bilbao N, et al. Journal of the American Chemical Society, 2017, 139(28), 9483.
55 Wang S, Wang W H, Lyu J P, et al. Acta Physica Sinica, 2021, 70(2), 127 (in Chinese).
王铄, 王文辉, 吕俊鹏, 等. 物理学报, 2021, 70(2), 127.
56 Kato T, Hatakeyama R. Nature Nanotechnology, 2012, 7(10), 651.
57 Chen L, He L, Wang H S, et al. Nature Communications, 2017, 8(1), 14703.
58 Jacobberger R M, Arnold M S. ACS Nano, 2017, 11(9), 8924.
59 Wu X S. Physics, 2009, 38(6), 409 (in Chinese).
吴孝松. 物理, 2009, 38(6), 409.
60 Nevius M S, Wang F, Mathieu C, et al. Nano Letters, 2014, 14(11), 6080.
61 Sprinkle M, Ruan M, Hu Y, et al. Nature Nanotechnology, 2010, 5(10), 727.
62 Han T L, Tang L B, Zuo W B, et al. Infrared Technology, 2021, 43(12), 1141 (in Chinese).
韩天亮, 唐利斌, 左文彬, 等. 红外技术, 2021, 43(12), 1141.
63 Geng Z, Hähnlein B, Granzner R, et al. Annalen der Physik, 2017, 529(11), 1700033.
64 Lu L S, Wang W T, Xie Y X, et al. Journal of Mechanical Engineering, 2021, 57(21), 234 (in Chinese).
陆龙生, 王文涛, 谢颖熙, 等. 机械工程学报, 2021, 57(21), 234.
65 Parmar J, Patel S K. Microwave and Optical Technology Letters, 2022, 64(1), 77.
66 Hossain F M, Al-Dirini F, Skafidas E. Journal of Applied Physics, 2014, 115(21), 214303.
67 Saha K K, Drndic M, Nikolic B K. Nano Letters, 2012, 12(1), 50.
68 Lin T C, Li Y S, Chiang W H, et al. Biosensors and Bioelectronics, 2017, 89, 511.
69 Jothi L, Jayakumar N, Jaganathan S K, et al. Materials Research Bulletin, 2018, 98, 300.
70 Rostami S, Mehdinia A, Niroumand R, et al. Analytica Chimica Acta, 2020, 1120, 11.
71 Jaiswal N K, Kovaević G, Pivac B. Applied Surface Science, 2015, 357, 55.
72 Omidi M, Faizabadi E. IEEE Sensors Journal, 2018, 18(21), 8642.
73 Wang H, Wang C, Wu H Y, et al. Journal of Xi’an Jiaotong University, 2020, 54(8), 107 (in Chinese).
王欢, 王常, 吴海洋, 等. 西安交通大学学报, 2020, 54(8), 107.
74 Xu L H, Wu T M. Journal of Materials Science: Materials in Electronics, 2020, 31(9), 7276.
75 Paul R K, Badhulika S, Saucedo N M, et al. Analytical Chemistry, 2012, 84(19), 8171.
76 Jing X, Illarionov Y, Yalon E, et al. Advanced Functional Materials, 2020, 30(18), 1901971.
77 Zhao L, Zhao B H, Chang S, et al. Micronanoelectronic Technology, 2013, 50(8), 474 (in Chinese).
赵磊, 赵柏衡, 常胜, 等. 微纳电子技术, 2013, 50(8), 474.
78 Wang J, Wang Q. Physica B: Condensed Matter, 2020, 583, 412022.
79 Wong K L, Chuan M W, Hamzah A, et al. Superlattices and Microstructures, 2020, 143, 106548.
80 Mutlu Z, Jacobse P H, McCurdy R D, et al. Advanced Functional Materials, 2021, 31(47), 2103798.
81 Sun J, Iwasaki T, Muruganathan M, et al. Applied Physics Letters, 2015, 106(3), 033509.
82 Zhang Q, Fang T, Xing H, et al. IEEE Electron Device Letters, 2008, 29(12), 1344.
83 Nayana G H, Vimala P, Pandian M K, et al. Diamond and Related Materials, 2022, 121, 108784.
84 Zhang W, Ragab T, Basaran C. IEEE Transactions on Electron Devices, 2019, 66(4), 1971.
85 Moslemi M R, Sheikhi M H, Saghafi K, et al. Microelectronics Reliability, 2012, 52(11), 2579.
86 Long M, Wang P, Fang H, et al. Advanced Functional Materials, 2019, 29(19), 1803807.
87 Ostovari F, Moravvej-Farshi M K. Applied Surface Science, 2014, 318, 108.
88 Rahman S, Faizan M, Boora N, et al. Journal of Electronic Materials, 2022, 51(12), 6815.
89 Yu J, Zhong J, Kuang X, et al. Nanoscale Research Letters, 2020, 15(1), 124.
90 Liu H Y, Niu Y X, Yin Y H, et al. Spectroscopy and Spectral Analysis, 2016, 36(12), 3811 (in Chinese).
刘海月, 牛燕雄, 尹贻恒, 等. 光谱学与光谱分析, 2016, 36(12), 3811.
91 Zhang Y, Hui C, Sun R, et al. Nanotechnology, 2014, 25(13), 135301.
92 Mak K F, Ju L, Wang F, et al. Solid State Communications, 2012, 152(15), 1341.
93 Hoseini S R, Rasooli Saghai H. Optical and Quantum Electronics, 2017, 49(4), 1.
[1] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[2] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[3] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[4] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[5] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[6] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[7] 李文龙, 支云飞, 陈泽文, 陕绍云, 李梦蕊. 纤维素-金属氧化物在传感器中的应用研究进展[J]. 材料导报, 2024, 38(3): 22060031-8.
[8] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[9] 吴伟同, 徐迪, 程学群, 张达威, 李晓刚. 国家材料腐蚀与防护科学数据中心建设历程与发展现状[J]. 材料导报, 2024, 38(23): 23090008-8.
[10] 麻艳佳, 杨黎, 郭胜惠, 侯明, 朱烨, 张德起, 高冀芸. 用于低浓度氢气检测的超灵敏TiO2传感材料高通量筛选方法研究[J]. 材料导报, 2024, 38(18): 23040092-7.
[11] 崔晓晴, 王水莲, 王锐, 张洪艳. 二维导电纳米材料在聚合物燃烧预警及阻燃应用中的研究进展[J]. 材料导报, 2024, 38(17): 23040277-9.
[12] 鲍艳, 韩旆, 张文博, 刘锋, 高璐, 马建中. 螺吡喃类刺激响应变色聚合物的研究进展[J]. 材料导报, 2024, 38(17): 23060044-9.
[13] 曾剑涛, 王勇, 江国权, 张元祥. 柔性三维力传感器的研究进展[J]. 材料导报, 2024, 38(15): 23100147-11.
[14] 穆申玲, 沈文锋, 吕大伍, 宋伟杰, 谭瑞琴. 电子鼻技术及其应用研究进展[J]. 材料导报, 2024, 38(14): 23040072-14.
[15] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed