Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23100147-11    https://doi.org/10.11896/cldb.23100147
  高分子与聚合物基复合材料 |
柔性三维力传感器的研究进展
曾剑涛1,2, 王勇1,2, 江国权1,2, 张元祥1,*
1 衢州学院机械工程学院,浙江 衢州 324000
2 浙江工业大学机械工程学院,杭州 310023
Research Progress of Flexible Three-dimensional Force Sensors
ZENG Jiantao1,2, WANG Yong1,2, JIANG Guoquan1,2, ZHANG Yuanxiang1,*
1 College of Mechanical Engineering, Quzhou University, Quzhou 324000, Zhejiang, China
2 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
下载:  全 文 ( PDF ) ( 44619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性传感器作为柔性可穿戴电子设备的关键组成部分,在健康监测、人机交互和智能机器人等新兴领域广泛应用而备受关注。传统的单一检测法向压力的柔性传感器无法满足复杂和先进智能系统中的使用需求,而柔性三维力传感器因其独特的多角度和全方位力学检测能力,逐渐成为研究的热点。为实现高性能柔性三维力传感器的研制目标,需要综合协调考虑传感机制、结构、材料和解耦方法等多种因素。近年来,许多学者致力于设计和制备高性能柔性三维力传感器,包括结构设计和新型材料的开发、数据处理和机器学习算法的改进,多方面的创新推动着其进一步发展。本文旨在概述柔性三维力传感器的研究进展,首先详细介绍了柔性三维力传感器各种形式的传感机理,并分析比较了各自的特点和优势;然后系统总结了柔性三维力传感器在结构设计、材料、解耦方法等方面的研究进展及相互影响,以及在智能机械臂、运动姿态检测、人机交互和无线健康监测等领域的应用;最后分析了柔性三维力传感器当前所面临的挑战,并对其未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾剑涛
王勇
江国权
张元祥
关键词:  柔性三维力传感器  传感机理  结构设计  功能材料  解耦方法    
Abstract: Flexible sensor is an important component of flexible wearable electronic devices, which have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interaction and smart robots. Conventional single-axis pressure sensors are not sufficient for the demands of complex and advanced intelligent systems, while flexible three-dimensional force sensors with unique multi-axis and all-around mechanical detection capabilities have become a popular topic. To achieve the goal of developing the flexible three-dimensional force sensors with high performance, it is necessary to consider multiple factors such as sensing mechanism, structural design, material, and decoupling method. In recent years, many researchers have dedicated to the design and fabrication of high performance flexible three-dimensional force sensors, including innovations in structure design and novel materials, improvement of data processing and machine learning algorithms. These multiple innovations are driving further development in these areas. This article aims to outline the research progress of flexible three-dimensional force sensors. Firstly, various sensing mechanisms of flexible three-dimensional force sensors have been introduced and their characteristics have been analyzed and compared. Additionally, progress in structural design, material, decoupling method, and their interrelationship as well as the applications in the related fields, containing intelligent robot arms, motion detection, human-machine interaction, and wireless health monitoring are summarized. Finally, the current challenges of flexible three-dimensional force sensor are analyzed, and its future development is prospected.
Key words:  flexible three-dimensional force sensors    sensing mechanism    structural design    functional material    decoupling method
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TP212  
基金资助: 国家自然科学基金(51605252);衢州市科技计划项目(2022K92)
通讯作者:  * 张元祥,衢州学院机械工程学院教授、硕士研究生导师,美国伦斯勒理工学院访问学者,浙江省高等学校中青年学科带头人。2005年本科毕业于浙江工业大学,2011年在浙江工业大学取得博士学位。2011年至今在衢州学院工作,目前主要从事微电子封装技术、柔性可穿戴电子等方面的研究工作。发表论文40余篇,包括IEEE Transactions on Components Packaging and Manufacturing Technology、Carbohydrate Polymers、Materials & Design、《力学学报》《固体力学学报》等。zhangyx@qzc.edu.cn   
作者简介:  曾剑涛,毕业于河北工程大学,获得工学学士学位。现为浙江工业大学和衢州学院联合培养硕士研究生,在张元祥教授的指导下进行研究,目前主要研究领域为柔性三维力传感器。
引用本文:    
曾剑涛, 王勇, 江国权, 张元祥. 柔性三维力传感器的研究进展[J]. 材料导报, 2024, 38(15): 23100147-11.
ZENG Jiantao, WANG Yong, JIANG Guoquan, ZHANG Yuanxiang. Research Progress of Flexible Three-dimensional Force Sensors. Materials Reports, 2024, 38(15): 23100147-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100147  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23100147
1 Wang Y, Yang B, Hua Z, et al. Journal of Physics D:Applied Physics, 2021, 55(13), 134001.
2 Wang C, Xia K, Wang H, et al. Advanced Materials, 2019, 31(9), 1801072.
3 Chao M, Di P, Yuan Y, et al. Nano Energy, 2023, 108, 108201.
4 Yin R, Wang D, Zhao S, et al. Advanced Functional Materials, 2021, 31(11), 2008936.
5 Zhang H, Zhang D, Wang Z, et al. ACS Applied Materials & Interfaces, 2023, 15(4), 5128.
6 Zhong F, Hu W, Zhu P, et al. Opto-Electronic Advances, 2022, 5(8), 210029-1.
7 Suen M S, Lin Y C, Chen R. Sensors and Actuators A:Physical, 2018, 269, 574.
8 Xu Z, Zhang D, Li Z, et al. ACS Applied Materials & Interfaces, 2023, 15(27), 32569.
9 Liu Q, Liu Y, Shi J, et al. Nano-Micro Letters, 2022, 14, 1.
10 Yang M, Cheng Y, Yue Y, et al. Advanced Science, 2022, 9(20), 2200507.
11 Guo X, Xing T, Feng J. ACS Applied Nano Materials, 2022, 5(12), 18427.
12 Zhang C, Li Z, Li H, et al. ACS Applied Materials & Interfaces, 2022, 14(33), 38328.
13 Li Y, Liu Y, Bhuiyan S R A, et al. Small Structures, 2022, 3(2), 2100131.
14 Xu D, Duan L, Yan S, et al. Micromachines, 2022, 13(5), 660.
15 Dong H, Zhang L, Wu T, et al. Organic Electronics, 2021, 89, 106044.
16 Kurup L A, Cole C M, Arthur J N, et al. ACS Applied Nano Materials, 2022, 5(2), 2973.
17 Sun P, Wu D, Liu C. Nanotechnology, 2021, 32(29), 295506.
18 Shi Y, Lü X, Wang W, et al. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1.
19 Yao T, Guo X, Li C, et al. Journal of Physics D:Applied Physics, 2020, 53(44), 445109.
20 Zhang M, Gao X, Lu C, et al. ACS Applied Materials & Interfaces, 2021, 13(46), 55735.
21 Song P, Wu D, Liu C. Advanced Materials Technologies, 2018, 4(5), 1800680.
22 Beccai L, Roccella S, Arena A, et al. Sensors and Actuators A:Physical, 2005, 120(2), 370.
23 Liu T, Inoue Y, Shibata K. In:IEEE SENSORS 2008. Lecce, 2008, pp.1513.
24 Luo Z, Tian X, Fan J, et al. Materials Reports, 2020, 34(1), 1069 (in Chinese).
骆泽纬, 田希悦, 范基辰, 等. 材料导报, 2020, 34(1), 1069.
25 Gao L, Zhu C, Li L, et al. ACS Applied Materials & Interfaces, 2019, 11(28), 25034.
26 Doshi S M, Thostenson E T. ACS Sensors, 2018, 3(7), 1276.
27 Mu C, Song Y, Huang W, et al. Advanced Functional Materials, 2018, 28(18), 1707503.
28 Viry L, Levi A, Totaro M, et al. Advanced Materials, 2014, 26(17), 2659.
29 Liu Y, Wo H, Huang S, et al. IEEE Sensors Journal, 2020, 21(2), 1378.
30 Dobrzynska J A, Gijs M A M. Journal of Micromechanics and Microengineering, 2012, 23(1), 015009.
31 Tian Y, He R, Wu J, et al. Materials Reports, 2023, 37(16), 13(in Chinese).
田玉玉, 何韧, 吴菊英, 等. 材料导报, 2023, 37(16), 13.
32 Liu W, Yu P, Gu C, et al. IEEE Sensors Journal, 2017, 17(21), 6867.
33 Yu P, Liu W, Gu C, et al. Sensors, 2016, 16(6), 819.
34 Yuan W, Dong S, Adelson E H. Sensors, 2017, 17(12), 2762.
35 Yamaguchi A, Atkeson C G. In:2016 IEEE-RAS 16th International Conference on Humanoid Robots. Cancun, 2016, pp.1045.
36 Meng H, Zhu W, Zhou L, et al. IEEE Sensors Journal, 2022, 22(4), 3595.
37 Wang H, De Boer G, Kow J, et al. Sensors, 2016, 16(9), 1356.
38 Zhang W, Xi Y, Wang E, et al. ACS Applied Materials & Interfaces, 2022, 14(17), 20122.
39 Wang Z, Bu T, Li Y, et al. ACS Applied Materials & Interfaces, 2021, 13(47), 56320.
40 Wang H, Wang W, Kim J, et al. Science Advances, 2023, 9(36), eadi2445.
41 Yeh S K, Fang W. IEEE Electron Device Letters, 2019, 40(4), 620.
42 Ren Z, Nie J, Shao J, et al. Advanced Functional Materials, 2018, 28(31), 1802989.
43 Wang Y, Wu X, Mei D, et al. Sensors and Actuators A:Physical, 2019, 297, 111512.
44 Wang S, Wang C, Lin Q, et al. Smart Materials and Structures, 2021, 30(10), 105004.
45 Sun X, Sun J, Li T, et al. Nano-micro Letters, 2019, 11, 1.
46 Chen S, Bai C, Zhang C, et al. Sensors and Actuators A:Physical, 2021, 330, 112857.
47 Thanh-Vinh N, Binh-Khiem N, Takahashi H, et al. Sensors and Actuators A:Physical, 2014, 215, 167.
48 Wang Y, Ruan X, Xing C, et al. Smart Materials and Structures, 2022, 31(9), 097001.
49 Liang G, Wang Y, Mei D, et al. Journal of Microelectromechanical Systems, 2015, 24(5), 1510.
50 Wu D, Cheng X, Chen Z, et al. Nanotechnology, 2022, 33(40), 405205.
51 Chen X, Shao J, Tian H, et al. Smart Materials and Structures, 2018, 27(2), 025018.
52 Zhang C, Zhang R, Ji C, et al. IEEE Sensors Journal, DOI:10. 1109/JSEN. 2023. 3301014.
53 Al-Mai O, Ahmadi M, Albert J. IEEE Sensors Journal, 2018, 18(17), 7005.
54 Jung Y, Lee D G, Park J, et al. Sensors, 2015, 15(10), 25463.
55 Lv Z, Song Z, Ruan D, et al. Functional Materials Letters, 2022, 15(6), 2250026.
56 Park J, Lee Y, Hong J, et al. ACS Nano, 2014, 8(5), 4689.
57 Jin W, Yu Z, Hu G, et al. Materials, 2022, 15(13), 4708.
58 Thouti E, Nagaraju A, Chandran A, et al. Sensors and Actuators A:Physical, 2020, 314, 112251.
59 Varghese H, Hakkeem H M A, Farman M, et al. Results in Engineering, 2022, 16, 100550.
60 Zhao K, Han J, Ma Y, et al. Nanomaterials, 2023, 13(4), 701.
61 Xu T, Zhu H, Dai S, et al. Measurement, 2022, 202, 111876.
62 Zhang J, Zhou L J, Zhang H M, et al. Nanoscale, 2018, 10(16), 7387.
63 Nie B, Geng J, Yao T, et al. Materials Horizons, 2021, 8(3), 962.
64 Qin Y, Zhang X, Zheng A, et al. Advanced Materials Technologies, 2022, 7(1), 2100510.
65 Zhang Y, Liu Q, Ren W, et al. Research, DOI:10. 34133/research. 0172. 21.
66 Xu D, Hu B, Zheng G, et al. Journal of Materials Science:Materials in Electronics, 2023, 34(11), 942.
67 Chen H, Jing Y, Lee J H, et al. Materials Horizons, 2020, 7(9), 2378.
68 Boutry C M, Negre M, Jorda M, et al. Science Robotics, 2018, 3(24), eaau6914.
69 Won S M, Wang H, Kim B H, et al. ACS Nano, 2019, 13(10), 10972.
70 Liu Y, Han H, Mo Y, et al. Review of Scientific Instruments, 2022, 93(8), 085006.
71 Zhang T, Liu H, Jiang L, et al. IEEE Sensors Journal, 2012, 13(2), 510.
72 Xi K, Wang Y, Mei D, et al. In:2015 IEEE International Conference on Advanced Intelligent Mechatronics. Busan, 2015, pp.476.
73 Park J, Lee Y, Hong J, et al. ACS Nano, 2014, 8(12), 12020.
74 Chandra M, Ke S Y, Chen R, et al. Sensors and Actuators A:Physical, 2017, 263, 386.
75 Wu Z, Huang T, Hou C, et al. In:2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale. Xi'an, 2021, pp.319.
76 Zeng X, Liu Y, Liu F, et al. Nano Energy, 2022, 92, 106777.
77 Yang J, Li X, Lü X, et al. IEEE Sensors Journal, 2018, 18(19), 7956.
78 Li F, Li S, Cao J, et al. Materials Reports, 2020, 34(1), 1059 (in Chinese).
李法利, 李晟斌, 曹晋玮, 等. 材料导报, 2020, 34(1), 1059.
79 Harada S, Kanao K, Yamamoto Y, et al. ACS Nano, 2014, 8(12), 12851.
80 Oh H, Yi G C, Yip M, et al. Science Advances, 2020, 6(46), eabd7795.
81 Yang J Y. Three-dimensional interfacial stress sensors based on graphene foam. Ph. D. Thesis, Xidian University, China, 2019 (in Chinese).
杨嘉怡. 基于石墨烯泡沫的三维界面应力传感器研究. 博士学位论文, 西安电子科技大学, 2019.
82 Zhu Y, Chen X, Chu K, et al. Sensors, 2022, 22(2), 628.
83 Yan Y, Hu Z, Yang Z, et al. Science Robotics, 2021, 6(51), eabc8801.
84 Yang J, Lü X, Li X, et al. IEEE Transactions on Electron Devices, 2018, 65(11), 5021.
85 Zhou G, Liao Z, Zhao R, et al. IEEE Sensors Journal, 2022, 22(17), 16820.
86 Wang F, Song Y. Journal of Sensors, 2021, 2021, 1.
87 Wang L Z. Research on flexible three-dimensional force tactile sensor based on the piezoresistive. Master’s Thesis, Harbin Institute of Techno-logy, China, 2016 (in Chinese).
王良泽. 基于压阻效应的柔性三维力触觉传感器的研究. 硕士学位论文, 哈尔滨工业大学, 2016.
88 Davies J, Thai M T, Hoang T T, et al. In:2023 IEEE International Conference on Robotics and Automation. London, 2023, pp.581.
[1] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[2] 贾峰峰, 俄松峰, 陈珊珊, 宁逗逗, 黄吉振, 陆赵情. 碳纤维湿法造纸工艺及碳纤维纸基功能材料的研究进展[J]. 材料导报, 2023, 37(8): 21070135-9.
[3] 吕晓书, 王霞玲, 蒋光明, 熊昆, 汪小莉, 张贤明. 纳米零价铁基材料去除水中硝酸盐污染的研究进展[J]. 材料导报, 2023, 37(4): 21010052-10.
[4] 刘茜, 梁晓正, 杨华明. 黑滑石的矿物学特征及加工与应用研究进展[J]. 材料导报, 2023, 37(21): 22030167-10.
[5] 田玉玉, 何韧, 吴菊英, 钟卫洲, 张凯. 电容式柔性压力传感器的性能优化原理及研究进展[J]. 材料导报, 2023, 37(16): 21110277-14.
[6] 董浩永, 任瑛, 张贵锋. MPCVD同质外延单晶金刚石研究进展[J]. 材料导报, 2023, 37(16): 21100019-8.
[7] 黄馨月, 雷小峰, 冯文林, 吴畏, 孙权. 基于金属氧化物敏感材料的一氧化碳传感器研究进展[J]. 材料导报, 2023, 37(15): 21100240-11.
[8] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[9] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[10] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[11] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[12] 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
[13] 雷鹏, 鲍艳. 基于MXene柔性压阻传感器研究进展[J]. 材料导报, 2022, 36(14): 20040214-11.
[14] 贾梦伟, 张婕, 周顺风, 杨云鹏, 卢立新. 环境响应水凝胶的非对称结构设计与智能仿生[J]. 材料导报, 2022, 36(12): 20100208-9.
[15] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed