Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20100119-9    https://doi.org/10.11896/cldb.20100119
  高分子与聚合物基复合材料 |
低温等离子体改性技术制备功能材料的研究进展
吴建飞1, 袁红梅1, 夏林敏1, 赵红艳1,2, 林金国1, 李吉庆1,*
1 福建农林大学材料工程学院,福州 350100
2 中南林业科技大学材料科学与工程学院,长沙 410018
Research Progress in the Preparation of Functional Materials by Low Temperature Plasma Modification Technology
WU Jianfei1, YUAN Hongmei1, XIA Linmin1, ZHAO Hongyan1,2, LIN Jinguo1, LI Jiqing1,*
1 School of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
2 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410018, China
下载:  全 文 ( PDF ) ( 11028KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低温等离子体改性技术是一种常用的材料改性手段,它是通过电离气体产生大量的带能粒子和各种形式的光辐射作用于材料表面,从而提高材料的疏水性、阻燃性和抗菌性等性能,达到制备具有一种或多种特定功能材料的目的。低温等离子体改性技术在材料改性中备受青睐得益于四大优势:(1)反应环境所需温度低;(2)处理效率高;(3)适用范围广;(4)不会破坏材料本身的性质。
近年来,低温等离子体改性技术在生物质材料、高分子材料、金属材料等领域都有广泛的应用,其在生物质材料领域的研究尤为活跃,经低温等离子体表面处理制备的超疏水性、阻燃性等功能材料被大量报道。在高分子材料领域,低温等离子体改性法常被用于制备超疏水性塑料薄膜材料、医用抗菌性口罩、防污无纺布等。通过低温等离子体化学气相沉积法沉积后的金属具有耐腐蚀、耐磨的作用。此外,低温等离子体改性技术还在三废处理、半导体材料、电子产品、电子电路、超导材料等领域获得丰硕的研究成果。
一直以来科学家对低温等离子体改性技术的应用研究远多于机理研究,这限制了其在材料改性中的发展,然而,研究低温等离子体对不同材料的作用机理对于制备所需功能材料具有指导性意义。实际上,等离子体在材料表面会发生解吸、掺杂、刻蚀、溅射和交联、表面接枝、界面聚合等一系列的物理化学反应,具体发生了何种反应与等离子体种类、材料类型、放电方式、工艺参数等密切相关。根据不同的作用机理对低温等离子体改性技术进行归类,有利于精准制备所需的功能材料。
本文综述了三种不同的低温等离子体改性方法:(1)低温等离子体表面处理法;(2)低温等离子体化学气相沉积法;(3)低温等离子体接枝聚合法。结合不同材料的性质和不同的改性机理,概述了低温等离子体改性技术在超疏水性、阻燃性和抗菌性功能材料中的应用。在分析低温等离子体改性机理的基础上,总结了如何利用不同气体类型的低温等离子体制备所需的特定功能材料,并指出用低温等离子体改性技术对材料进行改性的不足之处和发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴建飞
袁红梅
夏林敏
赵红艳
林金国
李吉庆
关键词:  低温等离子体改性技术  表面处理法  接枝聚合法  化学气相沉积法  功能材料    
Abstract: Low-temperature plasma modification technology is a commonly used material modification method. It generates a large number of energetic particles and various forms of light radiation through ionized gas to act on the surface of the material, thereby improving the hydrophobicity, flame retardancy and antibacterial properties, to achieve the purpose of preparing materials with one or more specific functions. Low-temperature plasma modification technology is favored in material modification thanks to four major advantages: (Ⅰ) low temperature required for the reaction environment, (Ⅱ) high processing efficiency, (Ⅲ) wide application range, (Ⅳ) the undamaged nature of the material itself.
In recent years, low-temperature plasma modification technology has been widely used in biomass materials, polymer materials, metal materials and other fields. Its research in the field of biomass materials is particularly active. The superhydrophobicity prepared by low-temperature plasma surface treatment ,flame retardant and other functional materials have harvested widely reported. In the field of polymer materials, the low-temperature plasma modification method is often used to prepare super-hydrophobic plastic film materials, medical antibacterial masks, and anti-fouling non-woven fabrics. The metal deposited by plasma chemical vapor deposition at low temperature can resist corrosion and wear. In addition, low temperature plasma modification technology have harvested fruitful research achievements in various fields such as the three waste treatment, semiconductor materials, electronic products, electronic circuits, superconducting materials and others.
Scientists have always applied far more research on low-temperature plasma modification technology than mechanism research, which limits its development in material modification. However, studying the mechanism of low-temperature plasma on different materials is instructive for the preparation of the required functional materials. In fact, a series of physical and chemical reactions such as desorption, doping, etching, sputtering, cross-linking, surface grafting and interfacial polymerization occur on the surface of plasma. The specific reactions are closely related to the type of plasma, material type, discharge mode and technological parameters. The classification of low-temperature plasma modification technology according to different action mechanisms is conducive to the accurate preparation of the required functional materials.
This article reviews three different low-temperature plasma modification methods: (Ⅰ) low-temperature plasma surface treatment, (Ⅱ) low-temperature plasma chemical vapor deposition, (Ⅲ) low-temperature plasma graft polymerization. Based on the properties of different materials and different modification mechanisms, the applications of low-temperature plasma modification technology in superhydrophobicity, flame retardancy and antibacterial functional materials are summarized. Based on the analysis of the mechanism of low-temperature plasma modification, this paper summarizes how to use different types of low-temperature plasma system to prepare the required specific functional materials, and points out the shortcomings and development prospects of low-temperature plasma modification technology applying to modified materials.
Key words:  low temperature plasma modification technology    surface treatment    graft polymerization    chemical vapor deposition    functional material
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TG156.99  
基金资助: 福建省科技计划星火项目(2018S0038;2018S0026);福建省发展和改革委员会项目(K1515863A)
通讯作者:  * 597170751@qq.com   
作者简介:  吴建飞, 2018年7月获石家庄铁道大学四方学院学士学位,2021年7月获福建农林大学硕士学位,从2021年9月开始在南京林业大学攻读博士学位。已在Journal of Hazardous Materials、Nano Research、Construction and Building Materials等期刊上发表数篇论文。目前主要研究方向为生物质能源与材料。
李吉庆,福建农林大学材料工程学院教授、博士研究生导师。1994年7月在福建林学院获工学学士学位。1999年和2005年在南京林业大学获硕士、博士学位。在Bioresource Technology、Construction and Building Materials、Wood Science Technology等期刊上发表论文20多篇,获一项发明专利、一项实用新型专利,已出版著作三部。主要从事竹木深加工关键技术研究。
引用本文:    
吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
WU Jianfei, YUAN Hongmei, XIA Linmin, ZHAO Hongyan, LIN Jinguo, LI Jiqing. Research Progress in the Preparation of Functional Materials by Low Temperature Plasma Modification Technology. Materials Reports, 2022, 36(21): 20100119-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100119  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20100119
1 Klar N A, Trevelpice. Fundamentals of plasma physics, Atomic Energy Press, China, 1983(in Chinese).
克拉尔N A, 特里维尔皮斯. 等离子体物理基础, 原子能出版社, 1983.
2 Chen F F. Introduction to plasma physics, People's Education Press, China, 1980(in Chinese).
Chen F F. 等离子体物理学导论, 人民教育出版社, 1980.
3 National Natural Science Foundation of China.Physics of plasma, Science Press, China, 1994 (in Chinese).
国家自然科学基金委员会. 等离子体物理学, 科学出版社, 1994.
4 Kaczmarek H, Kowalonek J, Szalla A, et al. Surface Science, 2002, 507, 883.
5 Huang H C, Ye D Q, Huang B C. Surface & Coatings Technology, 2007, 201(24), 9533.
6 Yang C, Wang Y, Jacobs C B, et al. Analytical Chemistry, 2017, 89(10), 5605.
7 Canullo L, Tallarico M, Botticelli D, et al. Clinical Oral Implants Research, 2018, 29(4), 389.
8 Kim Y, Yoo B J, Vittal R, et al. Journal of Power Sources, 2008, 175(2), 914.
9 Kim D S, Kim J E, Lee W O, et al. Plasma Processes and Polymers, 2019, 16(9), 1900081.
10 Tyczkowski J, Krawczyk I. Surface & Coatings Technology, 2003, 174, 849.
11 Cui S L, Liu J S. Hebei Industrial Science and Technology, 2004, 21(6), 56(in Chinese).
崔淑玲, 刘金树.河北工业科技, 2004, 21(6), 56.
12 Demkin V P, Melnichuk S V, Postnikov A V. Russian Physics Journal, 2020, 63(1), 142.
13 Wangkawong K, Phanichphant S. Topics in Catalysis, 2020, 63(3), 363.
14 Matra K, Tanakaran Y, Temponsub T, et al. International Review of Electrical Engineering, 2019, 14(3), 226.
15 Yang W, Hang Y, Fan H, et al. Journal of Physics D:Applied Physics, 2019, 53(7), 075204.
16 Campelo P H, Filho E G A, Silval M A, et al. Innovative Food Science & Emerging Technologies, 2020, 62, 102363.
17 Liu Y, Tang H, Tang X, et al. IEEE Transactions on Plasma Science, 2020, 48(4), 1173.
18 Tsikrikas G N, Serafetinides A A, Papayannis A D. Applied Physics B, 1996, 62(4), 357.
19 Su X X, Zhang A D, Yang K. Hydropower and New Energy, 2018, 32, 33.
20 Cheng L. Surface treatment of nitrogen-containing low temperature plasma materials and its application in biomedical field. Ph.D. Thesis, Zhejiang University, China, 2020(in Chinese).
程璐.含氮低温等离子体材料表面处理及其在生物医疗领域的应用. 博士学位论文, 浙江大学, 2020.
21 Yan J, Du H, Zhu G W, et al. Journal of Physics: Conference Series, 2021, 1790(1), 012060.
22 Samanta K K, Joshi A G, Jassal M, et al. Carbohydrate Polymers, 2021, 253, 117272-1.
23 Shao T, Liu F, Hai B, et al. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(3), 1557.
24 Guo Y R, Wang T, Chen J. Advanced Energy Materials, 2018, 8(18), 1800085.
25 Medvecká V, Moovská S, Mikulajová A, et al. European Food Research and Technology, 2020, 246(11), 2215.
26 Peran J, Ercegovic' R S. Textile Research Journal, 2020, 90(9-10), 1174.
27 Richard G, Tilmatine A, Benabderrahmane A, et al. IEEE Transactions on Industry Applications, 2019, 55(1), 812.
28 Zhang W, Xu X, Wei F, et al. Materials, 2018, 11(10), 1873.
29 Peran J, Ercegovic Raic S. Textile Research Journal, 2018, 90(9-10), 1174.
30 Zhang X T,Wu G N,Yang Y, et al. High Voltage Engineering, 2018(9), 335(in Chinese).
张兴涛,吴广宁,杨雁,等. 高电压技术,2018(9), 335.
31 Bian D L,Wu Y,Jia M. Plasma Processes and Polymers, 2018, 15(7), e1700236.1.
32 Xiang H J, Lei B, Yuan X C, et al. IEEE Transactions on Plasma Science, 2019, 47(1), 952.
33 Wang Z H, Sun H X, Du Y L, et al. Metals - Open Access Metallurgy Journal, 2019, 9(8), 861.
34 Bonelli S T, Pereyra I. Applied Surface Science, 2018, 442, 239.
35 Koo K, Park Y M, Yu J Y. Journal of Applied Polymer Science, 2006, 102(4), 3963.
36 Wang J T, Dong J Y, Xue Y. Applied Surface Science, 2019, 495, 143486.
37 Balamurugan K G, Mahadevan K. Arabian Journal for Science and Engineering, 2015, 40(6), 1647.
38 Mei S, Muneshwar T P, Cadien K C, et al. IEEE Transactions on Electron Devices, 2018, 65(10), 4513.
39 Kanneboina V, Madaka R, Agarwal P. Solar Energy, 2018, 166, 255.
40 Xing X, Chen T, Zhao R, et al. Sensors & Actuators B, 2018, 254, 227.
41 Makhotkina L Y, Khristoliubova V I. Journal of Physics:Conference Series, 2017, 789, 012032.
42 Bazaka K, Jacob M V. Materials Science Forum, 2010, 654-656, 1764.
43 Puliyalil H, Filipi G, Cvelbar U. Plasma Processes & Polymers, 2016, 13(7), 737.
44 Jong K K, Seung H K, Sung II C, et al. Journal of Nanoscience & Nanotechnology, 2014, 14(12), 9411.
45 Mrunalkumar, Chaudhari, Jincheng, et al. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2012, 30(6), 061302.
46 Chen K S, Chou C W, Hsu S H, et al. Materials Science Forum, 2003, 426-432(4), 3267.
47 Akamatsu H, Ichikawa K, Azuma K, et al. American Institute of Physics, 2010, 1282(1), 92.
48 Vesel A, Junkar I, Cvelbar U, et al. Surface and Interface Analysis, 2008, 40(11), 1444.
49 Lee C H, Jung D Y, Park Y J, et al. Journal of the Korean Institute of Illuminating & Electrical Installation Engineers, 2009, 23(12), 184.
50 Dimic-misic K, Kostic' M, Obradovic' B, et al. Cellulose, 2019, 26(6), 3845.
51 Zhu Y, Wang W, Jia X, et al. Applied Surface Science, 2012, 262, 156.
52 Lusk D, Casserly T, Gupta M, et al. Plasma Processes & Polymers, 2009, 6(S10), S429.
53 Kafi A A, Hurren C J, Huson M G, et al. Journal of Adhesion Science & Technology, 2009, 23(16), 2109.
54 Kajita S, Saeki T, Hirahata Y, et al. Japanese Journal of Applied Phy-sics, 2011, 50(1ISSUE2), 01AH02.
55 Chou W C, Wang R C, Liu C, et al. Materials, 2017, 10(11), 1223.
56 Chen W, Xu Y, Shi S, et al. Scientific Reports, 2018, 8(1), 2279.
57 Li H D. Dictionary of modern materials science and engineering, Shandong Science and Technology Press, 2001(in Chinese).
李恒德.现代材料科学与工程辞典, 山东科学技术出版社, 2001.
58 Wei Y S, Liu W Y, Wu H M, et al. Materials Chemistry & Physics, 2017, 189, 183.
59 Sun J, Chen Y, Cai X, et al. Nano Research, 2015, 8(11), 3496.
60 Kim H, Lee J, Sohn S, et al. Journal of Nanoscience & Nanotechnology, 2016, 16(5), 5285.
61 Baudrillart B, Bénédic F, Melouani A S, et al. Physica Status Solidi A Applications & Materials Science, 2016, 213(10), 2575.
62 Fei W, Inaba M, Hoshino H, et al. Physica Status Solidi, 2019, 216(21), 1900227.
63 Mochalov L, Logunov A, Vorotyntsev V. Materials Research Express, 2019, 6(5), 056407.
64 Mazloumpour M, Malshe P, El-shafei A, et al. Surface & Coatings Technology, 2013, 224,1.
65 Liu J, Qian H, Chen G, et al. Journal of Biomaterials Applications, 2017, 31(10), 1346.
66 Akamatsu K, Noto W, Fukuzawa H, et al. Separation & Purification Technology, 2018, 204, 298.
67 Siddig E A A, Xu Y, He T, et al. Plasma Science and Technology, 2019, 22(5), 055503.
68 Chen W, Zhou X, Zhang X, et al. Applied Surface Science, 2017, 407, 412.
69 Ryu J, Kim K, Park J Y, et al. Scientific Reports, 2017, 7(1), 1981.
70 Pabeliña K G, Lumban C O, Ramos H J. Nuclear Instruments & Methods in Physics Research, 2012, 272, 365.
71 Jimenez M, Lesaffre N, Bellayer S. et al. RSC Advances, 2015, 5(78), 63853.
72 Guo M, Meng F, Li G, et al. ACS Omega, 2019, 4(15), 16591.
73 Barzic A I, Popovici D, Hulubei C. International Journal of Polymer Analysis and Characterization, 2015, 21(1), 151006195846004.
74 Ambi A, Vera C, Parikh N, et al. Biofouling, 2018, 34(5-6), 1.
[1] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[2] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[3] 张祎辰, 王肖剑, 张明锦, 冯晴亮. 二硫化铂的可控合成及应用研究进展[J]. 材料导报, 2022, 36(15): 21050167-12.
[4] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[5] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[6] 孙剑锋, 张红, 梁金生, 王菲, 段昕辉, 王亚平. 生态环境功能材料领域的研究进展及学科发展展望[J]. 材料导报, 2021, 35(13): 13075-13084.
[7] 夏进军, 李洁, 张雨萌, 张育新. 折纸结构及其特性的工程应用策略[J]. 材料导报, 2021, 35(11): 11196-11207.
[8] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[9] 史公初, 廖亚龙, 张宇, 苏博文, 王伟. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13): 13044-13049.
[10] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[11] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[12] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[13] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
[14] 张旺玺, 王艳芝, 梁宝岩, 李启泉, 罗伟, 孙长红, 成晓哲, 孙玉周. 纳米金刚石基于功能材料应用的研究现状[J]. 《材料导报》期刊社, 2018, 32(13): 2183-2188.
[15] 林森, 孙仕勇, 申珂璇, 董发勤. 电气石的环境功能属性及其复合功能材料应用研究*[J]. 《材料导报》期刊社, 2017, 31(13): 131-137.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed