Research Progress in the Preparation of Functional Materials by Low Temperature Plasma Modification Technology
WU Jianfei1, YUAN Hongmei1, XIA Linmin1, ZHAO Hongyan1,2, LIN Jinguo1, LI Jiqing1,*
1 School of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China 2 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410018, China
Abstract: Low-temperature plasma modification technology is a commonly used material modification method. It generates a large number of energetic particles and various forms of light radiation through ionized gas to act on the surface of the material, thereby improving the hydrophobicity, flame retardancy and antibacterial properties, to achieve the purpose of preparing materials with one or more specific functions. Low-temperature plasma modification technology is favored in material modification thanks to four major advantages: (Ⅰ) low temperature required for the reaction environment, (Ⅱ) high processing efficiency, (Ⅲ) wide application range, (Ⅳ) the undamaged nature of the material itself. In recent years, low-temperature plasma modification technology has been widely used in biomass materials, polymer materials, metal materials and other fields. Its research in the field of biomass materials is particularly active. The superhydrophobicity prepared by low-temperature plasma surface treatment ,flame retardant and other functional materials have harvested widely reported. In the field of polymer materials, the low-temperature plasma modification method is often used to prepare super-hydrophobic plastic film materials, medical antibacterial masks, and anti-fouling non-woven fabrics. The metal deposited by plasma chemical vapor deposition at low temperature can resist corrosion and wear. In addition, low temperature plasma modification technology have harvested fruitful research achievements in various fields such as the three waste treatment, semiconductor materials, electronic products, electronic circuits, superconducting materials and others. Scientists have always applied far more research on low-temperature plasma modification technology than mechanism research, which limits its development in material modification. However, studying the mechanism of low-temperature plasma on different materials is instructive for the preparation of the required functional materials. In fact, a series of physical and chemical reactions such as desorption, doping, etching, sputtering, cross-linking, surface grafting and interfacial polymerization occur on the surface of plasma. The specific reactions are closely related to the type of plasma, material type, discharge mode and technological parameters. The classification of low-temperature plasma modification technology according to different action mechanisms is conducive to the accurate preparation of the required functional materials. This article reviews three different low-temperature plasma modification methods: (Ⅰ) low-temperature plasma surface treatment, (Ⅱ) low-temperature plasma chemical vapor deposition, (Ⅲ) low-temperature plasma graft polymerization. Based on the properties of different materials and different modification mechanisms, the applications of low-temperature plasma modification technology in superhydrophobicity, flame retardancy and antibacterial functional materials are summarized. Based on the analysis of the mechanism of low-temperature plasma modification, this paper summarizes how to use different types of low-temperature plasma system to prepare the required specific functional materials, and points out the shortcomings and development prospects of low-temperature plasma modification technology applying to modified materials.
作者简介: 吴建飞, 2018年7月获石家庄铁道大学四方学院学士学位,2021年7月获福建农林大学硕士学位,从2021年9月开始在南京林业大学攻读博士学位。已在Journal of Hazardous Materials、Nano Research、Construction and Building Materials等期刊上发表数篇论文。目前主要研究方向为生物质能源与材料。 李吉庆,福建农林大学材料工程学院教授、博士研究生导师。1994年7月在福建林学院获工学学士学位。1999年和2005年在南京林业大学获硕士、博士学位。在Bioresource Technology、Construction and Building Materials、Wood Science Technology等期刊上发表论文20多篇,获一项发明专利、一项实用新型专利,已出版著作三部。主要从事竹木深加工关键技术研究。
引用本文:
吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
WU Jianfei, YUAN Hongmei, XIA Linmin, ZHAO Hongyan, LIN Jinguo, LI Jiqing. Research Progress in the Preparation of Functional Materials by Low Temperature Plasma Modification Technology. Materials Reports, 2022, 36(21): 20100119-9.
1 Klar N A, Trevelpice. Fundamentals of plasma physics, Atomic Energy Press, China, 1983(in Chinese). 克拉尔N A, 特里维尔皮斯. 等离子体物理基础, 原子能出版社, 1983. 2 Chen F F. Introduction to plasma physics, People's Education Press, China, 1980(in Chinese). Chen F F. 等离子体物理学导论, 人民教育出版社, 1980. 3 National Natural Science Foundation of China.Physics of plasma, Science Press, China, 1994 (in Chinese). 国家自然科学基金委员会. 等离子体物理学, 科学出版社, 1994. 4 Kaczmarek H, Kowalonek J, Szalla A, et al. Surface Science, 2002, 507, 883. 5 Huang H C, Ye D Q, Huang B C. Surface & Coatings Technology, 2007, 201(24), 9533. 6 Yang C, Wang Y, Jacobs C B, et al. Analytical Chemistry, 2017, 89(10), 5605. 7 Canullo L, Tallarico M, Botticelli D, et al. Clinical Oral Implants Research, 2018, 29(4), 389. 8 Kim Y, Yoo B J, Vittal R, et al. Journal of Power Sources, 2008, 175(2), 914. 9 Kim D S, Kim J E, Lee W O, et al. Plasma Processes and Polymers, 2019, 16(9), 1900081. 10 Tyczkowski J, Krawczyk I. Surface & Coatings Technology, 2003, 174, 849. 11 Cui S L, Liu J S. Hebei Industrial Science and Technology, 2004, 21(6), 56(in Chinese). 崔淑玲, 刘金树.河北工业科技, 2004, 21(6), 56. 12 Demkin V P, Melnichuk S V, Postnikov A V. Russian Physics Journal, 2020, 63(1), 142. 13 Wangkawong K, Phanichphant S. Topics in Catalysis, 2020, 63(3), 363. 14 Matra K, Tanakaran Y, Temponsub T, et al. International Review of Electrical Engineering, 2019, 14(3), 226. 15 Yang W, Hang Y, Fan H, et al. Journal of Physics D:Applied Physics, 2019, 53(7), 075204. 16 Campelo P H, Filho E G A, Silval M A, et al. Innovative Food Science & Emerging Technologies, 2020, 62, 102363. 17 Liu Y, Tang H, Tang X, et al. IEEE Transactions on Plasma Science, 2020, 48(4), 1173. 18 Tsikrikas G N, Serafetinides A A, Papayannis A D. Applied Physics B, 1996, 62(4), 357. 19 Su X X, Zhang A D, Yang K. Hydropower and New Energy, 2018, 32, 33. 20 Cheng L. Surface treatment of nitrogen-containing low temperature plasma materials and its application in biomedical field. Ph.D. Thesis, Zhejiang University, China, 2020(in Chinese). 程璐.含氮低温等离子体材料表面处理及其在生物医疗领域的应用. 博士学位论文, 浙江大学, 2020. 21 Yan J, Du H, Zhu G W, et al. Journal of Physics: Conference Series, 2021, 1790(1), 012060. 22 Samanta K K, Joshi A G, Jassal M, et al. Carbohydrate Polymers, 2021, 253, 117272-1. 23 Shao T, Liu F, Hai B, et al. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(3), 1557. 24 Guo Y R, Wang T, Chen J. Advanced Energy Materials, 2018, 8(18), 1800085. 25 Medvecká V, Moovská S, Mikulajová A, et al. European Food Research and Technology, 2020, 246(11), 2215. 26 Peran J, Ercegovic' R S. Textile Research Journal, 2020, 90(9-10), 1174. 27 Richard G, Tilmatine A, Benabderrahmane A, et al. IEEE Transactions on Industry Applications, 2019, 55(1), 812. 28 Zhang W, Xu X, Wei F, et al. Materials, 2018, 11(10), 1873. 29 Peran J, Ercegovic Raic S. Textile Research Journal, 2018, 90(9-10), 1174. 30 Zhang X T,Wu G N,Yang Y, et al. High Voltage Engineering, 2018(9), 335(in Chinese). 张兴涛,吴广宁,杨雁,等. 高电压技术,2018(9), 335. 31 Bian D L,Wu Y,Jia M. Plasma Processes and Polymers, 2018, 15(7), e1700236.1. 32 Xiang H J, Lei B, Yuan X C, et al. IEEE Transactions on Plasma Science, 2019, 47(1), 952. 33 Wang Z H, Sun H X, Du Y L, et al. Metals - Open Access Metallurgy Journal, 2019, 9(8), 861. 34 Bonelli S T, Pereyra I. Applied Surface Science, 2018, 442, 239. 35 Koo K, Park Y M, Yu J Y. Journal of Applied Polymer Science, 2006, 102(4), 3963. 36 Wang J T, Dong J Y, Xue Y. Applied Surface Science, 2019, 495, 143486. 37 Balamurugan K G, Mahadevan K. Arabian Journal for Science and Engineering, 2015, 40(6), 1647. 38 Mei S, Muneshwar T P, Cadien K C, et al. IEEE Transactions on Electron Devices, 2018, 65(10), 4513. 39 Kanneboina V, Madaka R, Agarwal P. Solar Energy, 2018, 166, 255. 40 Xing X, Chen T, Zhao R, et al. Sensors & Actuators B, 2018, 254, 227. 41 Makhotkina L Y, Khristoliubova V I. Journal of Physics:Conference Series, 2017, 789, 012032. 42 Bazaka K, Jacob M V. Materials Science Forum, 2010, 654-656, 1764. 43 Puliyalil H, Filipi G, Cvelbar U. Plasma Processes & Polymers, 2016, 13(7), 737. 44 Jong K K, Seung H K, Sung II C, et al. Journal of Nanoscience & Nanotechnology, 2014, 14(12), 9411. 45 Mrunalkumar, Chaudhari, Jincheng, et al. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2012, 30(6), 061302. 46 Chen K S, Chou C W, Hsu S H, et al. Materials Science Forum, 2003, 426-432(4), 3267. 47 Akamatsu H, Ichikawa K, Azuma K, et al. American Institute of Physics, 2010, 1282(1), 92. 48 Vesel A, Junkar I, Cvelbar U, et al. Surface and Interface Analysis, 2008, 40(11), 1444. 49 Lee C H, Jung D Y, Park Y J, et al. Journal of the Korean Institute of Illuminating & Electrical Installation Engineers, 2009, 23(12), 184. 50 Dimic-misic K, Kostic' M, Obradovic' B, et al. Cellulose, 2019, 26(6), 3845. 51 Zhu Y, Wang W, Jia X, et al. Applied Surface Science, 2012, 262, 156. 52 Lusk D, Casserly T, Gupta M, et al. Plasma Processes & Polymers, 2009, 6(S10), S429. 53 Kafi A A, Hurren C J, Huson M G, et al. Journal of Adhesion Science & Technology, 2009, 23(16), 2109. 54 Kajita S, Saeki T, Hirahata Y, et al. Japanese Journal of Applied Phy-sics, 2011, 50(1ISSUE2), 01AH02. 55 Chou W C, Wang R C, Liu C, et al. Materials, 2017, 10(11), 1223. 56 Chen W, Xu Y, Shi S, et al. Scientific Reports, 2018, 8(1), 2279. 57 Li H D. Dictionary of modern materials science and engineering, Shandong Science and Technology Press, 2001(in Chinese). 李恒德.现代材料科学与工程辞典, 山东科学技术出版社, 2001. 58 Wei Y S, Liu W Y, Wu H M, et al. Materials Chemistry & Physics, 2017, 189, 183. 59 Sun J, Chen Y, Cai X, et al. Nano Research, 2015, 8(11), 3496. 60 Kim H, Lee J, Sohn S, et al. Journal of Nanoscience & Nanotechnology, 2016, 16(5), 5285. 61 Baudrillart B, Bénédic F, Melouani A S, et al. Physica Status Solidi A Applications & Materials Science, 2016, 213(10), 2575. 62 Fei W, Inaba M, Hoshino H, et al. Physica Status Solidi, 2019, 216(21), 1900227. 63 Mochalov L, Logunov A, Vorotyntsev V. Materials Research Express, 2019, 6(5), 056407. 64 Mazloumpour M, Malshe P, El-shafei A, et al. Surface & Coatings Technology, 2013, 224,1. 65 Liu J, Qian H, Chen G, et al. Journal of Biomaterials Applications, 2017, 31(10), 1346. 66 Akamatsu K, Noto W, Fukuzawa H, et al. Separation & Purification Technology, 2018, 204, 298. 67 Siddig E A A, Xu Y, He T, et al. Plasma Science and Technology, 2019, 22(5), 055503. 68 Chen W, Zhou X, Zhang X, et al. Applied Surface Science, 2017, 407, 412. 69 Ryu J, Kim K, Park J Y, et al. Scientific Reports, 2017, 7(1), 1981. 70 Pabeliña K G, Lumban C O, Ramos H J. Nuclear Instruments & Methods in Physics Research, 2012, 272, 365. 71 Jimenez M, Lesaffre N, Bellayer S. et al. RSC Advances, 2015, 5(78), 63853. 72 Guo M, Meng F, Li G, et al. ACS Omega, 2019, 4(15), 16591. 73 Barzic A I, Popovici D, Hulubei C. International Journal of Polymer Analysis and Characterization, 2015, 21(1), 151006195846004. 74 Ambi A, Vera C, Parikh N, et al. Biofouling, 2018, 34(5-6), 1.