Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13044-13049    https://doi.org/10.11896/cldb.19040073
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
铜冶炼渣制备建筑材料及功能材料的研究进展
史公初, 廖亚龙, 张宇, 苏博文, 王伟
昆明理工大学冶金与能源工程学院,昆明 650093
Research Progress on Preparation of Building Materials and Functional Materials with Copper Metallurgical Slag
SHI Gongchu, LIAO Yalong, ZHANG Yu, SU Bowen, WANG Wei
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 1746KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜是现代工业中不可或缺的基础材料,作为世界上最大的精炼铜生产国,我国每年产出近2 000万t铜冶炼渣(以下简称铜渣)。虽然铜渣中含有大量有价金属,但因其综合利用率极低,绝大部分的铜渣露天堆积,占用大量土地。此外,铜渣中含有不可生物降解性的砷、铅等剧毒物质,在堆积过程中会浸入土壤、流入江河,在生物体内积累,导致许多疾病与健康隐患。如何利用铜渣缓解矿产资源压力,实现经济与环境共赢,已成为当下迫切需要处理的难题。
铜渣富含铁和硅元素,主要由铁硅酸盐和磁铁矿相组成,提取和分离其中的铜、铁等有价元素的工艺不仅能耗高,也达不到无害化和减量化处理的目的。而铜渣能够直接、完全应用于建筑材料的制备,可获得相应高性能的材料,工艺过程环保,是铜渣清洁利用的首选方案。用铜渣取代天然矿物制备的铜渣微晶玻璃与矿渣棉不仅具有与传统微晶玻璃、矿棉相似甚至更优的性能,而且能够减少环境污染,降低工业成本,实现废渣高附加值再利用,具有广阔的市场前景。
此外,虽然铜渣在建筑、功能材料等领域的应用研究取得了显著成效,但也存在一些不足之处需要进一步研究。例如,利用铜渣制备混凝土时,需要对铜渣的活性进行激发,但物理激发因经济因素导致效果有限,而化学激发不能应用于大规模工程;铜渣制备出的微晶玻璃产品质量不稳定、成品率低、色调单一,不能满足市场需求;铜渣成分复杂且差异较大,严重影响水泥混凝土、微晶玻璃的性能可控性。
本文综述了不同炼铜工艺所产生的铜渣的物相特征及物理性质,分析了利用选矿及物理化学方法提取铜渣中铜、铁有价金属过程存在的问题,介绍了铜渣直接用于水泥、混凝土、沥青路面等建筑材料以及微晶玻璃、矿渣棉、磨料等功能材料方面的应用研究现状,剖析了铜渣在制备建筑、功能材料方面的清洁工艺中存在的问题和缺陷,并展望了其应用与研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史公初
廖亚龙
张宇
苏博文
王伟
关键词:  铜冶炼渣  物相特征  清洁利用  建筑材料  功能材料    
Abstract: Copper is an indispensable basic material in modern industry. As the world’s largest refined copper producer, China produces nearly 20 million tons of copper smelting slag (hereinafter referred to as copper slag) every year. Although it contains a large number of valuable metals, as lower comprehensive utilization rate, the vast majority of copper slag were open-air accumulated, occupying a lot of land. In addition, the slag contains non-biodegradable matters such as arsenic, lead and other highly toxic substances, which will go deep into the soil and flow into rivers during the accumulation process and accumulate in the biological body, leading to many diseases and health risks. How to use copper slag to relieve the pressure of mineral resources and achieve a win-win situation between economy and environment has become an urgent problem.
Copper slag is rich in iron and silicon, mainly composed of iron silicate and magnetite, the process to extract and separate valuable elements such as copper and iron need more energy consumption, and cannot achieve the purpose of ultimate harmless and reduce amount treatment. When copper slag is directly applied to the preparation of building materials, the corresponding high-performance materials can be obtained, and the utilization process has no additional energy consumption and no secondary pollution, so it is the preferred plan for the clean utilization of copper slag. Copper slag glass-ceramics and slag wool are prepared by replacing natural minerals with copper slag, which not only have similar or even better performance with traditional glass-ceramics and mineral wool, but also can solve environmental pollution, reduce industrial cost and rea-lize high value-added reuse of waste residue, and have broad market prospect.
In addition, although the application of copper slag in construction, functional materials and other fields has achieved significant results, there are some shortcomings need further research. For example, when copper slag is used to prepare concrete, it is necessary to stimulate the activity of copper slag. However, physical excitation has limited effect due to economic factors, and chemical excitation cannot be applied in large-scale engineering. The microcrystalline glass produced by copper slag has unstable quality, low yield and monotonous color, which cannot meet the market demand. The composition of copper slag is complex and varies greatly in different areas, which seriously affects the controllability of cement concrete and glass-ceramics.
This paper reviews the phase characteristics and physical properties of copper slags generated by different copper smelting process, and analyzes the problems existing in the process to extract valuable metals such as copper and iron from copper slag performed by dressing and physical and chemical method, and introduces the present research situation of copper slag directly used in building materials such as cement, concrete and asphalt pavement, as well as the functional materials such as microcrystalline glass, mineral wool and abrasive materials, and analyzes the problems and defects existing in the cleaning preparation process with copper slag on the aspects of the architectural and functional materials, and points out its application and the research trend aimed at improving the utilization of copper slag.
Key words:  copper metallurgical slag    phase characteristics    clean utilization    building material    functional material
                    发布日期:  2020-06-24
ZTFLH:  TQ170.9  
基金资助: 国家自然科学基金(21566017;21978122;21266011);昆明理工大学课外科技创新基金(2018M20172202028)
通讯作者:  liaoylsy@163.com   
作者简介:  史公初, 2016年6月毕业于郑州航空工业管理学院,获得工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生,在廖亚龙教授的指导下进行研究。目前主要研究领域为清洁材料制备。
廖亚龙,昆明理工大学教授,博士研究生导师。1988年7月本科毕业于四川大学化工学院,2007年8月在昆明理工大学冶金工程专业取得博士学位。主要从事资源综合利用、冶金物理化学方向的研究工作。
引用本文:    
史公初, 廖亚龙, 张宇, 苏博文, 王伟. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13): 13044-13049.
SHI Gongchu, LIAO Yalong, ZHANG Yu, SU Bowen, WANG Wei. Research Progress on Preparation of Building Materials and Functional Materials with Copper Metallurgical Slag. Materials Reports, 2020, 34(13): 13044-13049.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040073  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13044
1 Liao Y L, Ye C, Wang Y Y, et al. Chemical Industry and Engineering Progress, 2017, 36(8),3066(in Chinese).
廖亚龙, 叶朝, 王祎洋, 等. 化工进展, 2017, 36(8),3066.
2 Li L, Hu J H, Wang H. The Chinese Journal of Process Engineering, 2011, 11(1),65(in Chinese).
李磊, 胡建杭, 王华. 过程工程学报, 2011, 11(1),65.
3 Li Y S. Study on Environmental impact of recycling copper process from copper-slag. Ph.D. Thesis, China University of Mining and Technology (Beijing), China, 2009(in Chinese).
李英顺. 从铜炉渣中回收铜的环境影响评价研究. 博士学位论文, 中国矿业大学(北京), 2009.
4 Zhang H X. China Nonferrous Metallurgy, 2013, 42(3),32(in Chinese).
张海鑫. 中国有色冶金, 2013, 42(3),32.
5 Lv X L, Zhong S P, Yin W Z, et al. Nonferrous Metals Engineering & Research, 2017, 38(6),1(in Chinese).
吕旭龙,衷水平,印万忠,等.有色冶金设计与研究,2017,38(6),1.
6 Wang G H. Copper Engineering, 2014(4),27(in Chinese).
王国红. 铜业工程, 2014(4),27.
7 Zhao K, Cheng X L, Qi Y H, et al. The Chinese Journal of Process Engineering, 2012, 12(1),38(in Chinese).
赵凯, 程相利, 齐渊洪, 等. 过程工程学报, 2012, 12(1),38.
8 Shi C, Meyer C, Behnood A. Resources, Conservation and Recycling, 2008, 52(10),1115.
9 Chen Y W. World Nonferrous Metal, 2001(9),56(in Chinese).
陈远望. 世界有色金属, 2001(9),56.
10 Georgakopoulou M, Bassiakos Y, Philaniotou O, et al. Archaeometry, 2011, 1(53),123.
11 Dos Anjos M A G, Sales A T C, Andrade N. Journal of Environmental Management, 2017, 196,607.
12 Wang B, Sheng G H, Wang S S. Bulletin of the Chinese Ceramic Society, 2014, 33(4),764(in Chinese).
汪波, 盛广宏, 王诗生. 硅酸盐通报, 2014, 33(4),764.
13 Mithun B M, Narasimhan M C. Journal of Cleaner Production, 2015, 112(1),837.
14 Xue J P. Fujian Construction Science & Technology, 2016(6),48(in Chinese).
薛军鹏. 福建建设科技, 2016(6),48.
15 Zhang Y J. Guangxi Water Resources & Hydropower Engineering, 2004(4),22(in Chinese).
张雅娟. 广西水利水电, 2004(4),22.
16 Mirhosseini S R, Fadaee M, Tabatabaei R, et al. Construction & Buil-ding Materials, 2017, 134,44.
17 Wu W, Zhang W D, Ma G W. Materials and Design, 2010, 31,2878.
18 Al-Jabri K S, Al-Saidy A H, Taha R. Construction & Building Materials, 2011, 25(2),933.
19 Al-Jabri K S, Hisada M, Al-Oraimi S K, et al. Cement & Concrete Composites, 2009, 31(7),483.
20 Khanzadi M, Behnood A. Construction & Building Materials, 2009, 23(6),2183.
21 Zong L. Journal of Qingdao Institute of Architecture and Engineering, 2003, 24(2),20(in Chinese).
宗力. 青岛建筑工程学院学报, 2003, 24(2),20.
22 Geetha S, Madhavan S. Materials Today Proceedings, 2017, 4(2),3525.
23 Huang X Q, Wang X, Lu J H. Science Technology and Engineering, 2018, 18(12),275(in Chinese).
黄小青, 王旭, 陆金海. 科学技术与工程, 2018, 18(12),275.
24 Sharma R, Khan R A. Construction & Building Materials, 2017, 155,617.
25 Najimi M, Sobhani J, Pourkhorshidi A R. Construction & Building Materials, 2011, 25,1895.
26 Song X Y. Sun B J, Han J Y, et al. China Concrete and Cement Pro-ducts, 2017(6),86(in Chinese).
宋旭艳, 孙保金, 韩静云, 等. 混凝土与水泥制品, 2017(6),86.
27 Song J W, Fang K H, Zhu X L, et al. Journal of Wuhan University of Technology, 2013, 35(10),33(in Chinese).
宋军伟, 方坤河, 朱街禄, 等. 武汉理工大学学报, 2013, 35(10),33.
28 Zhu X L, Song J W, Wang L, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(11),3676(in Chinese).
朱街禄, 宋军伟, 王露, 等. 硅酸盐通报, 2017, 36(11),3676.
29 Du H Y, Ma J M, Guo R X, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(5),1634(in Chinese).
杜海云, 马倩敏, 郭荣鑫, 等. 硅酸盐通报, 2017, 36(5),1634.
30 Al-Jabri K S, Taha R A, Al-Hashmi A, et al. Construction & Building Materials, 2006, 20(5),322.
31 Song J W, Chen J. China Concrete and Cement Products, 2013(8),81(in Chinese).
宋军伟, 陈俊. 混凝土与水泥制品, 2013(8),81.
32 Edwin R S, Schepper M D, Gruyaert E, et al. Construction & Building Materials, 2016, 119,31.
33 Wang X, Huang X Q, Lu J H. Journal of Guangxi University of Science and Technology, 2018, 29(1),100(in Chinese).
王旭, 黄小青, 陆金海. 广西科技大学学报, 2018, 29(1),100.
34 Liu S H, Leng F G, Li L H. Concrete auxiliary cementitious material, China Architecture & Building Press, China, 2010(in Chinese).
刘数华, 冷发光, 李丽华. 混凝土辅助胶凝材料, 中国建材工业出版社, 2010.
35 Gorai B, Jana R K, Premchand. Resources Conservation & Recycling, 2003, 39(4),299.
36 Li L, Wang H, Hu J H, et al. Energy for Metallurgical Industry, 2009, 28(1),44(in Chinese).
李磊, 王华, 胡建杭, 等. 冶金能源, 2009, 28(1),44.
37 Liu G, Zhu R. Mining and Metallurgy, 2008, 17(3),59(in Chinese).
刘纲, 朱荣. 矿冶, 2008, 17(3),59.
38 Yang C H, Yan N, Ou Z W. Concrete, 2010,10,1(in Chinese).
杨长辉, 晏宁, 欧忠文. 混凝土, 2010, 10,1.
39 Huang S W, Yu P S. Journal of Nanchang University(Engineering & Technology), 2000, 22(2),81(in Chinese).
黄少文, 俞平胜. 南昌大学学报(工科版), 2000, 22(2),81.
40 Tan Y H, Zhou Q X, Wei R W. Journal of Xinjiang Institute of Technology, 2000(3),236(in Chinese).
谭月华, 周岐雄, 魏瑞斌. 新疆工学院学报, 2000(3),236.
41 Alp I, Deveci H, Süngün H. Journal of Hazardous Materials, 2008, 159(2),390.
42 Prasad P S, Ramana G V. Geotextiles & Geomembranes, 2016, 44(4),623.
43 Qin S W, Shen J J, Wu C L. Bulletin of the Chinese Ceramic Society, 2013, 32(4),572(in Chinese).
秦守婉, 申建军, 吴春丽. 硅酸盐通报, 2013, 32(4),572.
44 Deng Y L, Huang L L, Chen L F, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(12),4303(in Chinese).
邓玉莲, 黄丽霖, 陈柳峰, 等. 硅酸盐通报, 2016, 35(12),4303.
45 Dai Y Q, Yan S, Shen X D. Jiangsu Building Materials, 1998(2),29(in Chinese).
戴映清, 严生, 沈晓东. 江苏建材, 1998(2),29.
46 Pundhir N K S, Kamaraj C, Nanda P K. Journal of Scientific & Industrial Research, 2005, 64(12),997.
47 Raposeiras A C, Vargas-Cerón A, Movilla-Quesada D, et al. Construction & Building Materials, 2016, 119,268.
48 Shang Q F, Tian J Z, Liu B K. Highways & Transportation in Inner Mongolia, 2016(5),16(in Chinese).
尚庆芳, 田俊壮, 刘宝奎. 内蒙古公路与运输, 2016(5),16.
49 Lidelöw S, Mácsik J, Carabante I, et al. Journal of Environmental Ma-nagement, 2017, 204,695.
50 Rawlings R D, Wu J P, Boccaccini A R. Journal of Materials Science & Technology, 2012, 31(1),88.
51 Toya T, Kameshima Y, Yasumori A, et al. Journal of the European Ceramic Society, 2004, 24(8),2367.
52 Lin Q, Yang Z H, Xie H J, et al. Bulletin of the Chinese Ceramic Society, 2012, 31(5),1204(in Chinese).
林巧,杨志红,谢红佳,等. 硅酸盐通报, 2012, 31(5),1204.
53 Yekta B E, Tabatabaei B, Nia S H. Industrial Ceramics, 2004, 24(2),115.
54 Yang Z H, Xia J, Liao G, et al. Journal of Alloys and Compounds, 2013, 574,354.
55 Yang Z H, Lin Q, He Y, et al. Applied Mechanics & Materials, 2013, 253-255,295.
56 Lin Q. Study on iron reduction and preparation of glass ceramics from copper slag. Master’s Thesis, China University of Geosciences (Wuhan), China, 2013(in Chinese).
林巧. 铜渣还原提铁、制备微晶玻璃的研究. 硕士学位论文, 中国地质大学(武汉), 2013.
57 Liao L. Multipurpose Utilization of Mineral Resources, 2017(6),82(in Chinese).
廖力. 矿产综合利用, 2017(6),82.
58 Yan H, Yan Z G, Cheng Y, et al. China Ceramics, 1999(6),14(in Chinese).
闫浩, 鄢子贵, 成岳, 等. 中国陶瓷, 1999(6),14.
59 Yang G Y, Yang H, Guo X Z, et al. Journal of the Chinese Ceramic Society, 2010, 38(11),2045(in Chinese).
杨广跃, 杨辉, 郭兴忠, 等. 硅酸盐学报, 2010, 38(11),2045.
60 Yang Z H, Lin Q, Lu S C, et al. Ceramics International, 2014, 40(5),7297.
61 Xiao Y L, Liu Y, Li Y Q. Baosteel Technical Research, 2011, 5(2),3.
62 Xu L, Hu Z A. Baosteel Technology, 2002 (4),57(in Chinese).
徐莉, 胡志安. 宝钢技术, 2002(4),57.
63 Yu M X, Liu J D, Guo Y A, et al. Henan Metallurgy, 2013, 21(2),8(in Chinese).
于明兴, 刘敬东, 郭玉安, 等. 河南冶金, 2013, 21(2),8.
64 Deng Y. Fiber Glass, 2011(s1),23(in Chinese).
邓瑜. 玻璃纤维, 2011(s1),23.
65 Pei J J, Xing H W. Henan Metallurgy, 2013, 21(6),26(in Chinese).
裴晶晶, 邢宏伟. 河南冶金, 2013, 21(6),26.
66 Wang X. Experimental research of producing slag wool with liquid blast furnace slag. Master’s Thesis, Xi’an University of Architecture and Technology, China, 2014(in Chinese).
王旭. 以液态高炉渣为原料生产矿渣棉工艺优化的研究. 硕士学位论文, 西安建筑科技大学, 2014.
67 Wu L, Hao Y D, Zhang Y B, et al. China Nonferrous Metallurgy, 2015, 44(4),13(in Chinese).
吴龙, 郝以党, 张艺伯, 等. 中国有色冶金, 2015, 44(4),13.
68 Hao Y D, Wu L, Hu T Q, et al. Environmental Engineering, 2015, 33(2),105(in Chinese).
郝以党, 吴龙, 胡天麒, 等. 环境工程, 2015, 33(2),105.
69 Ning M G. Nonferrous Metals(Extractive Metallurgy), 1994(6),32(in Chinese).
宁模功. 有色金属(冶炼部分), 1994(6),32.
70 Zong Z H, Xiao Q Z, Wei G, et al. Cement Engineering, 2005(6),83(in Chinese).
纵振海, 肖其中, 卫耕, 等. 水泥工程, 2005(6),83.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[3] 王丹彤,周涵,范同祥. 生物宽带反射结构色效应研究综述[J]. 材料导报, 2018, 32(19): 3465-3472.
[4] 张旺玺, 王艳芝, 梁宝岩, 李启泉, 罗伟, 孙长红, 成晓哲, 孙玉周. 纳米金刚石基于功能材料应用的研究现状[J]. 《材料导报》期刊社, 2018, 32(13): 2183-2188.
[5] 林森, 孙仕勇, 申珂璇, 董发勤. 电气石的环境功能属性及其复合功能材料应用研究*[J]. 《材料导报》期刊社, 2017, 31(13): 131-137.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed