Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 143-151    https://doi.org/10.11896/cldb.201901016
  材料与可持续发展(一)——面向洁净能源的先进材料 |
Ti4O7功能陶瓷材料研究与应用现状
王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇
陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research Progress and Application Status of Ti4O7, the Functional Ceramic Material
WANG Yiwen, WANG Haidou, MA Guozheng, CHEN Shuying, HE Pengfei, DING Shuyu
National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 3654KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TinO2n-1是一类应用前景广阔、极具研究价值的高性能导电陶瓷材料。它具有独特的物理、化学和电化学性能,晶体结构中的氧缺陷除了使其拥有自身的陶瓷特性外,还赋予其类金属的导电性能,打破了其因导电性能差而限制陶瓷材料的进一步推广应用。Ti4O7是TinO2n-1中导电性能最佳的材料,同时它还拥有诸多优异的性质如敏锐的光响应能力、较强的耐酸腐蚀性和较好的电化学稳定性,这些独特的性质引起了材料研究者对其的高度关注,并将其广泛应用于电化学、热电材料、储能材料、光催化降解等领域。目前,研究人员基于Ti4O7的电子导电性和化学稳定性,主要将其用作电池电极和电催化载体材料,生产工艺已逐渐成熟并实现商业化。
   然而,Ti4O7的生产制备工艺还存在许多不足。粒径大小、孔隙率和结晶程度等因素均会对Ti4O7的性能产生影响。工业上主要采用高温还原钛源前驱体的方法,经过高温处理后的Ti4O7通常存在颗粒团聚、烧结严重、比表面积大的问题,这严重影响了Ti4O7的性能。为解决高温处理引发的固有问题,研究人员在制备工艺的设计优化方面不断进行尝试,在优化高温合成方法的同时,也探索了一些中低温合成制备途径,但依旧存在产物纯度不高、生产能耗大等问题,工艺细节还需深入研究。目前制备工艺的主要研究方向为:(1)提高制备产物的纯度;(2)细化晶粒,控制粉体粒径大小;(3)制备出形貌可控的粉体。针对Ti4O7制备过程中出现的问题,研究人员不断引入新技术。在溶胶凝胶法的基础上利用静电纺丝技术制备出高比表面积的核壳结构中空管道材料,烧结温度降低了近20%;首次采用微波辐射的加热方式,微波下辐射30 min即可制备出形貌可控的Ti4O7。近两年,随着研究的不断深入,Ti4O7的各项优异性能得到了进一步开发和应用,在锂离子电池、锂硫电池、金属-空气电池、燃料电池中表现出更卓越的快速充放电性能和循环稳定性,并在储能材料、热电材料和光电材料等新能源领域得到了应用。
   本文介绍了Ti4O7的组成结构和理化性质,归纳了Ti4O7陶瓷的主要制备工艺及典型应用,分析总结了各类制备工艺的优缺点和应用需求,并对本领域今后的热点研究方向和发展趋势进行了展望,为Ti4O7功能陶瓷材料的推广应用提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王译文
王海斗
马国政
陈书赢
何鹏飞
丁述宇
关键词:  Ti4O7功能材料  导电陶瓷  微观结构  电极  电催化载体  热电材料  锂硫电池  燃料电池    
Abstract: TinO2n-1 are considered to be a kind of high-performance conductive ceramic material, which have broad application prospect and crucial research value due to its unique physical, chemical and electrochemical properties. In addition to its own ceramic characteristics, the oxygen defects in the crystal structure endow it with the metal-like conductive properties, which break up the limitation on further application of ceramic materials because of its poor conductivity. Ti4O7 exhibits the best conductivity among TinO2n-1 materials, what’s more, it also have many other remarkable properties such as outstanding photoresponse, strong acid and alkali corrosion resistance and better electrochemical stability, which has aroused great concern of material researchers and has been widely used in the field of electrochemistry, thermoelectric materials, energy storage material, photocatalytic degradation and so on. Currently, by virtue of its distinguished electron conductivity and chemical stability, Ti4O7 was mainly used as battery electrodes and electrocatalytic support materials. The production process has been mature and commercialized.
The preparationprocess of Ti4O7 still have many defects. Particle size, porosity, crystallinity and other factors all exert a great influence on the performance of Ti4O7. The method of revivifying titanium precursor at high temperature has been commonly applied to industry. However, the Ti4O7 which was treated at high temperature would come out a series problems such as particle agglomeration, serious sintering and high specific surface area, resulting in the poor performance of Ti4O7. Therefore, researchers are trying to optimize the preparation process, and explore other synthetic methods at low temperature, but there are still some unsolved problems such as low product purity and high energy consumption. The details of the process need to be further studied. At present, three main issues consititute the majority of the research upon: Ⅰ. improving the purity of the product; Ⅱ. refining grain size and controlling particle size, Ⅲ. preparation of powder with controlled morphology.Researchers constantly introduce new technologies into the preparationprocess of Ti4O7. On the basis of the sol-gel method, the core-shell hollow pipe material with high specific surface area was successfully prepared via electrospining technology, while the sintering temperature was reduced by nearly 20%. The microwave heating method was firstly adopted to obtained Ti4O7 with controlled structures by radiating only 30 minutes under microwave. In recent two years, with the deepening of research, various excellent properties of Ti4O7 have been further developed and utilized. Ti4O7 shows superior rapid charge and discharge properties and cycle stability in lithium-ion batteries, lithium-sulfur batteries, metal-air batteries, fuel cells. What’s more, it has been applied in energy storage materials, thermoelectricity materials, photoelectricity materials and many other new energy fields.
This paper introduces the composition, structure and physicochemical properties of Ti4O7, summarizes the main preparation methods and typical applications of Ti4O7 ceramic, analyzes the advantages and disadvantages of various preparation methods and application requirements. And outlooks the future research directions and development trends in the field, which provide some references for the popularization and application of Ti4O7 functional ceramic material.
Key words:  Ti4O7 functional material    conductive ceramics    microstructure    electrode    electrocatalyst support    thermoelectric material    lithium-sulfur battery    fuel cell
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51535011;51675531);北京市自然科学基金(3172038)
作者简介:  王译文,2016年6月毕业于中国人民解放军装甲兵工程学院,获得工学学士学位。王海斗,研究员,博士生导师,陆军装甲兵学院装备再制造技术国防科技重点实验室常务副主任,wanghaidou@tsinghua.org.cn。
引用本文:    
王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
WANG Yiwen, WANG Haidou, MA Guozheng, CHEN Shuying, HE Pengfei, DING Shuyu. Research Progress and Application Status of Ti4O7, the Functional Ceramic Material. Materials Reports, 2019, 33(1): 143-151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901016  或          http://www.mater-rep.com/CN/Y2019/V33/I1/143
1 Andersson S. Acta Chemica Scandinavica,1957,11(10),1641.2 Han W Q, Zhang Y. Applied Physics Letters,2008,92(20),37.3 Graves J E, Pletcher D, Clarke R L, et al. Journal of Applied Electrochemistry,1992,22(3),200.4 Bartholomew R F, Frankl D R. Physical Review,1969,187(3),828.5 Gusev A A, Avvakumov E G, Medvedev A Z H, et al. Science of Sintering,2007,39(1),51.6 Walsh F C, Wills R G A. Electrochimica Acta,2010,55(22),6342.7 Smith J R, Walsh F C, Clarke R L. Journal of Applied Electrochemistry,1998,28(10),1021.8 Ioroi T, Senoh H, Yamazaki S I, et al. ECS Transactions,2008,11(1),1041.9 Wang G, Liu Y, Ye J, et al. Journal of Alloys & Compounds,2017,704,18.10 Cass R B. U.S. patent, US4931213,1990. 11 Hayfield P C S. Development of a new material-monolithic Ti4O7 ebonex® ceramic, Royal Society of Chemistry,2001.12 Guan Dongbo, Ma Jian. Acta Physica Sinica,2012(1),397(in Chinese).管东波,毛健.物理学报,2012(1),397.13 Han W Q, Zhang Y. Applied Physics Letters,2008,92(20),37.14 Zhu R, Liu Y, Ye J, et al. Journal of Materials Science: Materials in Electronics,2013,24(12),4853.15 Zhang X, Liu Y, Ye J, et al. Micro & Nano Letters,2013,8(5),251.16 Harada S, Tanaka K, Inui H. Journal of Applied Physics,2010,108,804.17 Houlihan J F, Mulay L N. Materials Research Bulletin,1971,6(8),737.18 Weast R C. CRC handbook of chemistry and physics,CRC Press,1989.19 Clarke R L, Harnsberger S K. American Laboratory,1988,20,8.20 Nagasawa K, Kato Y, Bando Y, et al. Journal of the Physical Society of Japan,1970,29(1),241.21 Walsh F C, Wills R G A. Electrochimica Acta,2010,55(22),6342.22 Pang Q, Kundu D, Cuisinier M, et al. Nature Communications,2014,5,4759.23 Schlenker C, Buder R, Schlenker M, et al. Physica Status Solidi,2010,54(1),247.24 Weissmann M, Weht R. Physical Review B,2011,271(3 Pt 2),F552.25 Watanabe M, Ueno W, Hayashi T. Journal of Luminescence,2007,122(1),393.26 Gusev A A, Avvakumov E G, Vinokurova O B. Science of Sintering,2003,35(3),141.27 Watanabe M. Physica Status Solidi,2009,6(1),260.28 Kao W H, Patel P, Haberichter S L. Journal of the Electrochemical Society,1997,144(6),1907.29 Li X, Zhu A L, Qu W, et al. Electrochimica Acta,2010,55(20),5891.30 Babić B, Gulicovski J, Gajić -Krstajić L, et al. Journal of Power Sources,2009,193(1),99.31 Igartua A, Fernández X, Areitioaurtena O, et al. Tribology International,2009,42(4),561.32 Gardos M N. Tribology Letters,2000,8(2-3),79.33 Graves J E, Pletcher D, Clarke R L, et al. Journal of Applied Electrochemistry,1991,21(10),848.34 Hayfield P C S, Hill A. Restoration of Buildings & Monuments,2000,6(6),647.35 Han W Q, Wang X L. Applied Physics Letters,2010,97(24),862.36 Andersson S, Magnéli A. Naturwissenschaften,1956,43(21),495.37 Chen G, Bare S R, Mallouk T E. Journal of the Electrochemical Society,2002,149(8),A109238 Graves J E, Pletcher D, Clarke R L, et al. Journal of Applied Electrochemistry,1992,22(3),200.39 Yang Fan. Preparation of catalystsupport material by reduction from transition metal (Ti, Mo) oxide and electrochemical performance of the catalysts. Doctor’s thesis, Beijing University of Technology,2013(in Chinese).杨帆.过渡金属(Ti,Mo)氧化物还原制备载体及电催化性能研究.博士论文,北京工业大学,2013.40 Wang Yizhi. Primary investigations of Magnéli phase compounds and the Magnéli compounds based composites for some electrochemical applications. Doctor’s thesis, Beijing University of Technology,2016(in Chinese).王义智.Magnéli相化合物及其复合材料电化学应用初探.博士论文,北京工业大学,2016.41 Kolbrecka K, Przyluski J. Electrochimica Acta,1994,39(11-12),1591.42 Zhang X, Liu Y, Ye J, et al. Micro & Nano Letters,2013,8(5),251.43 Yao S, Xue S, Zhang Y, et al. Journal of Materials Science: Materials in Electronics,2017,28(10),7264.44 Tang C, Zhou D, Zhang Q. Materials Letters,2012,79(23),42.45 Sen W, Sun H, Yang B, et al. International Journal of Refractory Metals and Hard Materials,2010,28(5),628.46 Li X, Liu Y, Ye J. Journal of Materials Science Materials in Electronics,2016,27(4),3683.47 Kitada A, Hasegawa G, Kobayashi Y, et al. Journal of the American Chemical Society,2012,134(26),10894.48 Tian Man, Li Xueming, He Hongyun, et al. Journal of Functional Materials,2017,48(2),2177(in Chinese).田嫚,黎学明,贺洪云,等.功能材料,2017,48(2),2177.49 Lu Y, Matsuda Y, Sagara K, et al. Advanced Materials Research,2011,415-417(1),1291.50 Toyoda M, Yano T, Tryba B, et al. Applied Catalysis B Environmental,2009,88(1-2),160.51 Portehault D, Maneeratana V, Candolfi C, et al. ACS Nano,2011,5(11),9052.52 Maneeratana V, Portehault D, Chaste J, et al. Advanced Materials,2014,26(17),2654.53 Pang Q, Kundu D, Cuisinier M, et al. Nature Communications,2014,5,4759.54 Takeuchi T, Fukushima J, Hayashi Y, et al. Catalysts,2017,7(2),65.55 Lee H, Su J H, Seshadri R C, et al. Scientific Reports,2016,6,36581.56 Mei S, Jafta C J, Lauermann I, et al. Advanced Functional Materials,2017,27(26),1701176.57 Zhang X, Zhong X, Xu W, et al. Ionics,2017,1-6.58 Nazar L F, Kundu D, Black R, et al. Energy & Environmental Science,2014,8(4),1292.59 Krstajic N V, Vracar L M, Radmilovic V R, et al. Surface Science,2007,601(9),1949.60 Escalante-Garcia I L, Duron-Torres S M, Cruz J C, et al. Minerva Anes-tesiologica,2010,33(10),736.61 Duma A D, Wu Y C, Su W N, et al. Chemcatchem,2017,5(10),1155.62 Tang B, Wei H, Zhao D, et al. Solar Energy Materials & Solar Cells,2017,161,183.63 Zaky A M, Chaplin B P. Environmental Science & Technology,2013,47(12),6554.64 Geng P, Chen G. Separation & Purification Technology,2017,185,61.65 Marinkovski M, Paunović P, Blaževska Gilev J, et al. Advances in Natural Science: Theory and Applications,2012,1(3),215.66 Tsumura T, Hattori Y, Kaneko K, et al. Desalination,2004,169,269.67 Kwon D H, Kim K M, Jang J H, et al. Nature Nanotechnology,2010,5(2),148.
[1] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[2] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[3] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[4] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[5] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[6] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[7] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[8] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[9] 李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
[10] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[11] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[12] 闫静, 田晓, 赵宣, 赵丽娟, 杨艳春, 陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[13] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[14] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[15] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed