Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1882-1888    https://doi.org/10.11896/cldb.18060190
  金属与金属基复合材料 |
冶金离子熔体电导率测定技术进展
劳一桂1,2,3, 高运明1,2,3, 王强1,2, 李光强1,2
1 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,武汉 430081
2 武汉科技大学钢铁冶金新工艺湖北省重点实验室,武汉 430081
3 湖北省冶金二次资源工程技术研究中心,武汉 430081
A Technological Review on Measurements of Electrical Conductivity for Metallurgical Ionic Melts
LAO Yigui1,2,3, GAO Yunming1,2,3, WANG Qiang1,2, LI Guangqiang1,2
1 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081
2 Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking, Wuhan University of Science and Technology, Wuhan 430081
3 Hubei Provincial Engineering Technology Research Center of Metallurgical Secondary Resources, Wuhan 430081
下载:  全 文 ( PDF ) ( 1365KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 冶金离子熔体是高温电解冶炼、金属精炼等冶炼过程中的反应介质或多相反应的直接参与者。为保证冶炼过程的顺利进行,冶金离子熔体必须具有适宜的物理化学性质。电导率作为冶金离子熔体的一项重要物理化学性质,在冶金生产过程中对控制产品质量、生产效率、能耗和成本等具有重要意义。此外,电导率与离子熔体结构、离子迁移、导电机理和电极反应机理息息相关,研究冶金离子熔体的电导率也有助于研究冶金的基础理论。因此,电导率对冶金领域的重要性不言而喻,它的精确测定一直以来都是冶金工作者关注的一个重点。液态电解质电导率的测定通常在电导池中进行。但冶金离子熔体温度往往很高,导致电导率的测定存在困难,诸如合适的电导池的构建以及电极材料的选择。在测定原理的指导下,已经发展了多种电导率测定技术,目前测量冶金离子熔体电导率常用的方法有交流二电极法、交流四电极法、连续改变电导池常数法(CVCC法)和同轴圆筒法。交流二电极法和交流四电极法由于其电导池结构相对简单,电极、电导池材料获得容易,适用范围广,在监管生产过程中或在需要快速获得电导率数据的情况下得到了广泛应用。相对于交流二电极,交流四电极的优越性在于将测定电压和电流的电极分开,测定电压的电极上几乎没有电流经过,无需考虑电极和引线电阻。但这两种方法在电导池结构上均存在缺陷,使得测试的精度难以把握。CVCC法和同轴圆筒法相对于前两者,在电导池结构上的优越性使得它们的测定精度较高,可在对精度要求较高的情况下使用。但它们的电导池结构通常较为复杂,CVCC法在某些条件下需要特定的材料才能满足实验要求,从而导致实验成本高;同轴圆筒法尽管在电极对中的条件下具备免标定的优势,但高温下依然存在电极变形的影响,同时该法的电导率测试范围受到实验条件下能构建的电导池大小的限制。本文主要对上述四种电导率测定方法的原理、技术优缺点、操作、使用条件及测定效果等进行了归纳总结;此外还对四种电导率测定方法之间的联系进行了简单分析,以期指导实验室电导率的测定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
劳一桂
高运明
王强
李光强
关键词:  电导率  冶金离子熔体  交流二电极法  交流四电极法  连续改变电导池常数法(CVCC法)  同轴圆筒法    
Abstract: Metallurgical ionic melt usually acts as the reaction medium or direct participant of heterogeneous smelting reaction involving electro-winning and metal refining, etc. at high temperature. Aiming at ensuring the smooth process of smelting, metallurgical ionic melt has to possess appropriate physical and chemical properties. As an important physicochemical property of metallurgical ionic melt, the electrical conductivity plays a dominant role in controlling the quality of products, production efficiency, energy consumption, cost during metallurgical production. In addition, the electrical conductivity is closely related to the structure of ionic melt, ionic migration, conductive mechanism and electrode reaction mechanism. The study of the electrical conductivity of metallurgical ionic melt is also contributed to the exploration of basic theories concerning metallurgy. Accordingly, it is of great significance to study the electrical conductivity in metallurgical field, and its accurate determination has always been a focus of attention of metallurgical researchers. Measurement of electrical conductivity of liquid electrolyte is commonly performed in a conductance cell. However, metallurgical ionic melt often holds high temperature, which brings about difficulties in determination, including the construction of appropriate conductance cell and the choice of electrode material. Under the guidance of measurement principle, diverse measurement techniques of conductivity have been developed. At present, the commonly used approaches for measuring the electrical conductivity of metallurgical ion melt consist of AC two-electrode technique, AC four-electrode technique, continuously varying cell constant (CVCC) technique and coaxial cylinders technique. AC two-electrode and AC four-electrode techniques hold widespread applications, owing to their relatively simple structure of the conductance cell, and the ease of obtaining the materials of the electrode and the conductive cell. Hence, it is widely used for monitoring the production process and the quick measurement of the conductivity data. Compared with AC two-electrode technique, the superiority of four-electrode technique lies in the separation of the electrodes of measuring voltage and current, and there is almost no current passing through the electrodes for measuring voltage, thus the consideration of electrodes and lead wires resistance can be avoided. Nevertheless, the two methods suffer from defects in the structure of the conductance cell, which makes the measurement accuracy difficult to grasp. The CVCC and the coaxial cylinders techniques are superior to the above two methods in the structure of the conductance cell, which makes them possess higher measurement accuracy and capable of applying in the case of higher precision requirements. Unfortunately, the structure of their conductance cell is usually rather complicated. Moreover, the CVCC technique requires specific materials to satisfy the experimental requirements under certain conditions, which leads to a higher experimental cost. Although the coaxial cylinders technique exhibits the advantage of calibration-free under the condition of electrode centered, the influence of the electrode deformation still exists at high temperature. Meanwhile, the measurement range of the electrical conductivity is limited by the size of the conductance cell that can be constructed under experimental conditions. In this article, the experimental technical experiences of the above four methods including measurement principles, relative merits of the techniques, operation and working conditions are summarized and compared; additionally, the relationship among the above four methods is also analyzed briefly, for the sake of providing guidance for measuring electrical conductivity of metallurgical ionic melt in laboratory.
Key words:  electrical conductivity    metallurgical ionic melt    AC two-electrode technique    AC four-electrode technique    continuously varying cell constant (CVCC) technique    coaxial cylinders technique
                    发布日期:  2019-05-21
ZTFLH:  TF701  
基金资助: 国家自然科学基金委员会-辽宁省人民政府联合基金(U1508214);国家自然科学基金(51174148)
通讯作者:  gaoyunming@wust.edu.cn   
作者简介:  劳一桂,2016年6月毕业于贵州大学,获得工学学士学位。现为武汉科技大学材料与冶金学院研究生,在高运明教授的指导下进行研究。目前主要研究领域为电渣物理化学性质。高运明,武汉科技大学教授、博士研究生导师。毕业于北京科技大学冶金物理化学专业,先后在1992年、1995年、2004年分别获得学士、硕士、博士学位。主要从事电化学冶金及高温熔体物理化学方面的研究工作。主持或参加完成的项目包括国家高技术研究发展计划(863计划)项目、国家自然科学基金委员会-辽宁省人民政府联合基金重点项目、国家自然科学基金面上项目等。在国内外学术期刊上发表论文70余篇,获授权的国家发明专利4项。在《金属学报》上发表的1篇论文荣获第五届中国科协期刊特别优秀学术论文奖、《金属学报》2009年优秀论文奖。
引用本文:    
劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
LAO Yigui, GAO Yunming, WANG Qiang, LI Guangqiang. A Technological Review on Measurements of Electrical Conductivity for Metallurgical Ionic Melts. Materials Reports, 2019, 33(11): 1882-1888.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060190  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1882
1 Schiefelbein S L. Review of Scientific Instruments,1998,69(9),3308.
2 Robbins G D. Journal of the Electrochemical Society,1969,116(6),813.
3 Malki M, Echegut P. Journal of Non-Crystalline Solids,2003,323(1-3),131.
4 Dai X, Zhang C F. Nonferrous Metals,2005(4),2(in Chinese).
戴曦,张传福.有色金属(冶炼部分),2005(4),2.
5 Hara S, Hashimoto H, Ogino K. Transactions of the Iron and Steel Institute of Japan,1983(23),1053.
6 Ogino K, Hashimoto H, Hara S. Tetsu-to-Hagane,2010,64(2),225.
7 Kim K B, Sadoway D R. Journal of the Electrochemical Society,1992,139(139),1027.
8 Kim K B. Journal of the Electrochemical Society,1992,139(8),2128.
9 Wang S, Li G, Lou T, et al. ISIJ International,2007,39(11),1116.
10 Korenko M, Priš zák J, Šimko F. Chemical Papers,2013,67(10),1350.
11 Segers L, Fontana A, Winand R. Canadian Metallurgical Quarterly,2014,22(4),429.
12 Sun C, Guo X. Transactions of Nonferrous Metals Society of China,2011,21(7),1648.
13 Simonnet C, Phalippou J, Malki M, et al. Review of Scientific Instruments,2003,74(5),2805.
14 Macdonald C J, Huang G, Pal U B, et al. Office of scientific & technical information technical reports, U.S. Department of Energy, USA,2000.
15 Hundermark R J, Jahanshahi S, Sun S. In: International Conference on Molten Slags, Fluxes and Salts. Cape Town,2004,pp.487.
16 Barati M, Coley K S. Metallurgical & Materials Transactions B,2006,37(B),41.
17 Apisarov A P, Kryukovskii V A, Zaikov Y P, et al. Russian Journal of Electrochemistry,2007,43(8),870.
18 Dedyukhin A, Apisarov A, Tkacheva O, et al. ECS Transactions,2009,16(49),317.
19 Apisarov A A, Redkin A A, Zaikov Y P, et al. Journal of Chemical & Engineering Data,2011,56(12)4733.
20 Mitchell A, Cameron J. Metallurgical & Materials Transactions B,1971,2(12),3361.
21 Bacon G, Mitchell A, Nishizaki R M. Metallurgical Transactions,1972,3(3),631.
22 Hu X W, Wang Z W, Gao B L, et al. Journal of Northeastern University (Natural Science),2008,29(9),1294(in Chinese).
胡宪伟,王兆文,高炳亮,等.东北大学学报(自然科学版),2008,29(9),1294.
23 Wang Z W, Hu X W, Gao B L, et al. Journal of Northeastern University (Natural Science),2006,27(7),786(in Chinese).
王兆文,胡宪伟,高炳亮,等.东北大学学报(自然科学版),2006,27(7),786.
24 Pal U B, Macdonald C J, Chiang E, et al. Metallurgical & Materials Transactions B,2001,32(6),1119.
25 Fellner P, Midtlyng S, Sterten A, et al. Journal of Applied Electrochemistry,1993,23(1),78.
26 Fellner P, Kobbeltvedt O, Sterten A, et al. Electrochimica Acta,1993,38(4),589.
27 Hiveš J, Thonstad J, Sterten A, et al. Metallurgical & Materials Transactions B,1996,27(2),255.
28 Híveš J, Thonstad J. Electrochimica Acta,2004,49(28),5111.
29 Kubiňáková E, Híveš J, Danielik V. Acta Chimica Slovaca,2016,9(2),141.
30 Xie H W, Wang J X, Zhai Y C, Hu X Y, et al. The Open Materials Science Journal,2011,5(1),83.
31 Liang L K, Guo Z W, Wang Y Z, et al. Journal of Northeastern University (Natural Science),1985(3),74(in Chinese).
梁连科,郭仲文,王云志,等.东北大学学报(自然科学版),1985(3),74.
32 Yim E W, Feinleib M. Journal of the Electrochemical Society,1957,104(10),622.
33 Redkin A, Zaikov Y, Tingaev P, et al. Ionics,2013,19(12),1949.
34 Jia Z. Electrochimcal measurement method, Chemical Industry Press, China,2006(in Chinese).
贾铮.电化学测量方法,化学工业出版社,2006.
35 Hills G J, Djordjevic' S. Electrochimica Acta,1968,13(7),1721.
36 Tomkins R P T, Janz G J, Andalaft E. Journal of the Electrochemical Society,1970,117(7),125.
37 Ogino K, Hara S. Tetsu-to-Hagane,1977,63(13),2141.
38 Wang X W, Ray D P, Tabereaux A T. In: Light Metals. San Diego,1992,pp.481.
39 Liao C F, Wang K, Wang X, et al. Nonferrous Metals Science & Engineering,2013(5),19(in Chinese).
廖春发,王坤,王旭,等.有色金属科学与工程,2013(5),19.
40 Voronin B M, PrisyazhnyiV D, et al. Ukrainskii Khimicheskii Zhurnal,1980(46),229.
41 Schiefelbein S L, Sadoway D R. Metallurgical & Materials Transactions B,1997,28(6),1141.
42 Schiefelbein S L. A new technique to measure the electrical properties of molten oxides. PhD. Thesis, Massachusetts Institute of Technology, USA,1996.
43 Schiefelbein S L. High Temperature Materials & Processes,2001,20(3-4),247.
44 Verein Deutscher Eisenhüttenleute (VDEh). Slag atlas, Verlag Stahlei-sen GmbH, Germany,1995.
45 Fried N A. Electrical properties of binary solutions of molten titanium dioxide-barium oxide. PhD. Thesis, Massachusetts Institute of Technology, USA,1996.
[1] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[2] 刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
[3] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[4] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[5] 何钦生, 邹兴政, 李方, 唐锐, 赵安中, 田世龙. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2684-2692.
[6] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[7] 吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
[8] 刘元军, 刘国熠, 赵晓明. 滑石粉涂层复合材料的制备及其介电性能和电导率*[J]. 《材料导报》期刊社, 2017, 31(18): 28-32.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed