Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (12): 2066-2071    https://doi.org/10.11896/j.issn.1005-023X.2018.12.024
  材料研究 |
水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系
钱如胜,张云升,张宇,杨永敢
东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
Relationships Between Liquid Ion Concentration and Electrical Conductivity During the Early Hydration of Cement-Fly Ash System
QIAN Rusheng, ZHANG Yunsheng, ZHANG Yu, YANG Yonggan
Key Laboratory for Civil Engineering Material of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 5211KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过离心和高压萃取法分别提取水泥-粉煤灰体系1 h内和5~24 h的液相,采用电感耦合等离子体发射光谱仪(ICP-OES)、pH计和电导率测试仪分别测试液相离子浓度、pH值和电导率,并探究了粉煤灰掺量对体系液相离子浓度、pH值和电导率的影响。结果表明:随水化时间延长,水泥-粉煤灰体系早龄期液相中K+浓度先降低后上升,Na+、SiO44-浓度和pH值逐渐上升,5 h左右Ca2+和SO42-浓度达到峰值,10 h左右AlO2-浓度达到峰值;随粉煤灰掺量增加,液相中各离子浓度和电导率呈降低趋势,根据液相电导率变化规律将体系早龄期水化进程分为溶解期、诱导期和加速期三个阶段;液相电导率与离子总浓度成正相关,主要受K+、Na+和OH-浓度影响,高掺量(50%)粉煤灰对单一离子与电导率之间相关性的影响较为显著。    
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱如胜
张云升
张宇
杨永敢
关键词:  水泥  粉煤灰  早龄期  液相  离子浓度  电导率    
Abstract: Based centrifugation and high-pressure extraction, liquid phase of cement-fly ash system between 0—1 h and 5—24 h were extracted respectively. In order to explore the influence from different dosage of fly ash on the ion concentration and the conductivity in liquid phase of system, the ion concentration and electrical conductivity were analysed by inductively coupled plasma optical emission spectrometry (ICP-OES), pH meter and conductivity meter. The results show that along hydration time, K+ concentration present downward trend firstly and then increased gradually, Na+ and SiO44- concentration and pH increased gradually, Ca2+ and SO42- concentration present on the contrary with K+ concentration reaching the peak value around 5 h, AlO2- concentration present similarly with Ca2+ and SO42- concentration arriving the peak value around 10 h. Ions concentration and conductivity in liquid phase of cement-fly ash system are decreased along with the increasing dosage of fly ash(0%,10%,30% and 50%), and three stages (dissolution, induction, and acceleration) during the early hydration of cement-fly ash system are identified according to the characteristics of the laws of liquid conductivity change. Liquid conductivity are positively correlated with the total ion concentrations, mainly affected by K+, Na+ and OH-, and the relationships between single ion and the liquid conductivity are influenced significantly by high dosage(50%) of fly ash.
Key words:  cement    fly ash    early hydration time    liquid phase    ion concentration    conductivity
               出版日期:  2018-06-25      发布日期:  2018-07-20
ZTFLH:  TU528.44  
基金资助: 国家重点基础研究发展计划(973)资助项目(2015CB655102);国家自然科学基金(51378116;51678143)
作者简介:  钱如胜:男,1991年生,硕士研究生,研究方向为土木工程材料 E-mail:qianrs63277@163.com 张云升:通信作者,男,1974年生,博士,教授,博士研究生导师,研究方向为高与超高性能结构混凝土、工业废渣的处理和资源化、无机铝硅聚合物、结构混凝土的耐久性及寿命预测等 E-mail:zhangys279@163.com
引用本文:    
钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
QIAN Rusheng, ZHANG Yunsheng, ZHANG Yu, YANG Yonggan. Relationships Between Liquid Ion Concentration and Electrical Conductivity During the Early Hydration of Cement-Fly Ash System. Materials Reports, 2018, 32(12): 2066-2071.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.12.024  或          http://www.mater-rep.com/CN/Y2018/V32/I12/2066
1 Ge X L, Zhai J W, Feng Y L. The comprehensive utilization of coal fly ash[J]. Advanced Materials Research,2012,347-353:1362.
2 Jiang J Q, Wu H S, Liu Y J, et al. Application of high content fly ash and alag powder in high strength concrete[J].Fly Ash Comprehensive Utilization,2017(2):61(in Chinese).
姜金起,吴海生,刘燕军,等.大掺量粉煤灰和矿粉在高性能混凝土中的应用[J].粉煤灰综合利用,2017(2):61.
3 Wang J, Liao R, Tao L, et al. A comprehensive utilization of silver-bearing solid wastes in chalcopyrite bioleaching[J]. Hydrometallurgy,2017,169:152.
4 Gruyaert E, Van den Heede P, Maes M, et al. Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests[J]. Cement and Concrete Research,2012,42(1):173.
5 Mehta P, Monteiro P. Concrete: Structure, properties, and mate-rials[M]. New York: McGraw-Hill,1986.
6 Liu G, Zhang Y, Ni Z, et al. Corrosion behavior of steel submitted to chloride and sulphate ions in simulated concrete pore solution[J]. Construction and Building Materials,2016,115:1.
7 Liu Z Y, Sun W. Theoretical carbonation model related with pore solution pH value for steel bar depassivation in concrete[J]. Journal of the Chinese Ceramic Society,2007,35(7):899(in Chinese).
刘志勇,孙伟.与钢筋脱钝化临界液相pH值相关联的混凝土碳化理论模型[J].硅酸盐学报,2007,35(7):899.
8 Rothstein D, Thomas J J, Christensen B J, et al. Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time[J]. Cement and Concrete Research,2002,32(10):1663.
9 Liu Z Y, Zhang Y S, Sun G W, et al. Resistivity method for monitoring the early age pore solution structure evolution of cement pastes[J]. Journal of Civil, Architectural &Environmental Engineering,2012(5):148(in Chinese).
刘志勇,张云升,孙国文,等.电阻率法研究早期水泥净浆孔结构的演变过程[J].土木建筑与环境工程,2012(5):148.
10 Zhang J, Deng M. Characterization of Na+, K+ and OH- ions in the pore solutions of cement pastes with fly ashes[J]. Concrete,2010(11):5(in Chinese).
张建亮,邓敏.粉煤灰水泥浆体孔溶液中K+、Na+和OH-离子的表征[J].混凝土,2010(11):5.
11 Anders K A, Bergsma B P, Hansson C M. Chloride concentration in the pore solution of Portland cement paste and Portland cement concreten[J]. Cement & Concrete Research,2014,63(2):35.
12 Gao P, Wei J, Zhang T, et al. Modification of chloride diffusion coefficient of concrete based on the electrical conductivity of pore solution[J]. Construction and Building Materials,2017,145: 361.
13 Plusquellec G, Geiker M R, Lindgard J, et al. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison[J]. Cement and Concrete Research,2017,96:13.
14 Snyder K A, Feng X, Keen B D, et al. Estimating the electrical conductivity of cement paste pore solutions from OH-, K+ and Na+ concentrations[J]. Cement and Concrete Research,2003,33(6):793.
15 Vollpracht A, Lothenbach B, Snellings R, et al. The pore solution of blended cements: A review[J]. Materials and Structures,2016,49(8):3341.
16 Atkinson A, Nickerson A K. The diffusion of ions through water-saturated cement[J]. Journal of Materials Science,1984,19(9):3068.
17 Haas J, Nonat A. From C-S-H to C-A-S-H: Experimental study and thermodynamic modelling[J]. Cement and Concrete Research,2015,68:124.
18 Shehata M H, Thomas M, Bleszynski R F. The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes[J]. Cement and Concrete Research,1999,29(12):1915.
19 Dan J M, Wang P M. Studies on the ion concentrations in solution during the early hydration of Portland cement[J]. Journal of Shihezi University (Natural Science),2007,25(4):494(in Chinese).
但建明,王培铭.水泥早期水化液相离子浓度变化规律的研究[J].石河子大学学报(自科版),2007,25(4):494.
20 Akpinar E, Otluoglu K, Turkmen M, et al. Effect of the presence of strong and weak electrolytes on the existence of uniaxial and biaxial nematic phases in lyotropic mixtures[J]. Liquid Crystals,2016,43(11):1693.
[1] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[2] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[3] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[4] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[5] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[6] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[7] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[8] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[9] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[10] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[11] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[12] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[13] 赵丕琪, 梁辰, 孙传奎, 刘红花, 王守德, 芦令超. 基于Rietveld/XRD(内标法)水泥浆体物相演变定量表征与非晶定量公式修正[J]. 材料导报, 2019, 33(4): 644-649.
[14] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[15] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed