Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 630-633    https://doi.org/10.11896/cldb.201904012
  无机非金属及其复合材料 |
TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响
李海南1,,马保国2,谭洪波2,梅军鹏2
1 武汉纺织大学会计学院,武汉 430200;
2 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
Influence of TiO2 Nanoparticles on Hydration and Chloride Erosion of
Cement-fly Ash System
LI Hainan1, MA Baoguo2, TAN Hongbo2, MEI Junpeng2
1 Accounting College, Wuhan Textile University, Wuhan 430200;
2 State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070
下载:  全 文 ( PDF ) ( 3238KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用微量热分析、X射线衍射(XRD)、差热分析(DSC)、扫描电子显微镜(SEM)、压汞测孔仪(MIP)等手段研究了TiO2纳米颗粒对水泥粉煤灰体系水化硬化以及抗氯离子侵蚀的影响。研究发现:TiO2纳米颗粒的异相晶核效应和微集料填充效应协同作用,促进了水泥熟料的水化,加快了粉煤灰的二次水化进程并降低了硬化水泥石的孔体积,使水泥粉煤灰材料的微观结构更加均匀密实,提高了水泥粉煤灰材料的力学性能和抗氯离子侵蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李海南
马保国
谭洪波
梅军鹏
关键词:  TiO2纳米颗粒  粉煤灰  水泥  水化  氯离子侵蚀    
Abstract: Micro-thermal analysis, X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) were employed in the present work to study the hydration-hardening performance and the chloride erosion resistance of cement-fly ash system containing TiO2 nanoparticles. Results showed that the synergic action of heterogeneous nucleation effect and micro-aggregate filling effect of TiO2 particles promotes the hydration of cement, accelerates the secondary hydration of fly ash and causes pore volume decrease of the matrix. In consequence, the hardened pastes become more homogeneous and compact, resulting in an improvement in mechanical properties and chloride erosion resistance.
Key words:  TiO2 nanoparticle    fly ash    cement    hydration    chloride erosion
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TQ172  
基金资助: 硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金(SYSJJ2018-14);国家“十三五”科技支撑计划(2016YFC0701003-5)
作者简介:  李海南,2015年12月毕业于武汉理工大学,获得工学博士学位。于2016年1月在武汉纺织大学工作,主要从事水泥基材料与高性能混凝土的研究。
引用本文:    
李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
LI Hainan, MA Baoguo, TAN Hongbo, MEI Junpeng. Influence of TiO2 Nanoparticles on Hydration and Chloride Erosion of
Cement-fly Ash System. Materials Reports, 2019, 33(4): 630-633.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904012  或          http://www.mater-rep.com/CN/Y2019/V33/I4/630
1 Wang A Q, Zhang C Z, Sun W.Cement and Concrete Research,2003,33,2023.2 Wang A Q, Zhang C Z, Sun W. Cement and Concrete Research,2004,34,2057.3 Wang A Q, Zhang C Z, Sun W. Cement and Concrete Research,2004,34,2061.4 Li Y, Jia L, Ma Q B. Concrete,2014(10),93(in Chinese).李源,贾磊,马清波.混凝土,2014(10),93.5 Yu Z Q, Ye G.Construction and Building Materials,2013,45,30.6 Hou P K, Kawashima S, Wang K J, et al. Cement and Concrete Compo-sites,2013,35(1),12.7 Wang S Z, Llamazos E, Baxter L, et al. Fuel,2008,87(3),359.8 Sakai E, Miyahara S, Ohsawa S, et al.Cement and Concrete Research,2005,35(6),1135.9 Lam L, Wang Y L, Poon C S.Cement and Concrete Research,2000,30(5),747.10 Chen J, Kou S C, Poon C S. Cement and Concrete Research,2012, (34),642.11 Hou P K. Effects of nano SiO2 on the hydration and hardening properties of fly ash cementitious materials. Ph.D. Thesis, Chongqing University,2012(in Chinese).侯鹏坤.纳米SiO2对水泥粉煤灰体系水化硬化作用研究.博士学位论文,重庆大学,2012.12 Rahhal V, Talero R. Journal of Thermal Analysis and Calorimetry,2004,78(1),191.13 Nocu-Wczelik W.Journal of Thermal Analysis and Calorimetry,2001,65(2),613.14 Lee B Y, Kurtis K E. Journal of the American Ceramic Society,2010,93(10),3399.15 Nazari A, Riahi S. Materials Science and Engineering: A,2010,528(2),756.
[1] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[2] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[3] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[4] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[5] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[6] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[7] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[8] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[9] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[10] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[11] 赵丕琪, 梁辰, 孙传奎, 刘红花, 王守德, 芦令超. 基于Rietveld/XRD(内标法)水泥浆体物相演变定量表征与非晶定量公式修正[J]. 材料导报, 2019, 33(4): 644-649.
[12] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[13] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[14] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[15] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed