Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1335-1339    https://doi.org/10.11896/cldb.17110298
  无机非金属及其复合材料 |
粉煤灰对水泥基材料水化过程电阻率的影响研究
廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚
武汉科技大学城市建设学院,武汉 430065
Effect of Fly Ash on the Electrical Resistivity of Cement-based Materials During the Hydration Process
LIAO Yishun, SHEN Qing, XU Pengfei, LIAO Guosheng, ZHONG Xun
School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065
下载:  全 文 ( PDF ) ( 2734KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了粉煤灰掺量分别为0%、20%、40%时水泥浆体在72 h龄期内的电阻率、孔溶液离子浓度和孔结构的变化规律。结果表明,不同粉煤灰掺量的水泥浆体电阻率变化曲线会发生交叉,在交点之前,水泥浆体的电阻率随着粉煤灰掺量的增大而增大,在交点之后,随着粉煤灰掺量增大,水泥浆体的电阻率减小;掺入粉煤灰使得孔溶液的pH值降低,液相离子浓度减小,浆体总孔隙率增大。随着粉煤灰掺量的增大,水泥浆体的液相离子浓度变小,而孔隙率变大,受这两个因素的双重影响,不同粉煤灰掺量的水泥浆体的电阻率变化曲线产生交叉。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
廖宜顺
沈晴
徐鹏飞
廖国胜
钟侚
关键词:  硅酸盐水泥  粉煤灰  电阻率  离子浓度  孔结构    
Abstract: The evolution of electrical resistivity, concentration of ions in the pore solution and the pore structure of Portland cement pastes with fly ash in mass fraction of 0%, 20% and 40%, respectively during 72 h were investigated. The results show that the curves of electrical resistivity of cement paste blended with different contents of fly ash will intersect with each other. Before the intersections of the curves of electrical resistivity, the electrical resistivity increases with the increase of fly ash content, while after the intersections, the electrical resistivity is lower when the fly ash content is higher. The incorporation of fly ash leads to the decrease of pH value of the pore solution, the decrease of the ion concentration in the liquid phase and the increase of the total porosity. The ion concentration of the pore solution in the paste with higher content of fly ash is lower than that in the paste with lower content of fly ash, while the porosity is higher, the coupling effect results in the intersection of the curves of electrical resistivity.
Key words:  Portland cement    fly ash    electrical resistivity    ion concentration    pore structure
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TQ172  
基金资助: 国家自然科学基金青年基金(51608402);湖北省自然科学基金(2015CFB353);长江科学院开放研究基金(CKWV2014211/KY)
作者简介:  廖宜顺,武汉科技大学副教授,硕士研究生导师。2013年6月毕业于华中科技大学结构工程专业,获博士学位。Email: liaoyishun@wust.edu.cn
引用本文:    
廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
LIAO Yishun, SHEN Qing, XU Pengfei, LIAO Guosheng, ZHONG Xun. Effect of Fly Ash on the Electrical Resistivity of Cement-based Materials During the Hydration Process. Materials Reports, 2019, 33(8): 1335-1339.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17110298  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1335
1 Yan P Y, Zhang Z Q. Journal of the Chinese Ceramic Society, 2017, 45(8), 1066(in Chinese).
阎培渝, 张增起.硅酸盐学报, 2017, 45(8), 1066.
2 Wei X, Li Z. Materials and Structures, 2005, 38, 411.
3 Zuo Y B, Wei X S. Journal of Chongqing University, 2015, 38(4), 45(in Chinese).
左义兵, 魏小胜.重庆大学学报, 2015, 38(4), 45.
4 Shen X D, Yao Y. Research Progress of Cementitious Materials, Higher Education Press, China, 2010(in Chinese).
沈晓冬, 姚燕.水泥材料研究进展, 高等教育出版社, 2012.
5 Lothenbach B, Winnefeld F,Alder C, et al. Cement and Concrete Research, 2007, 37(4), 483.
6 Rasanen V, Penttala V. Cement and Concrete Research, 2004, 34(5), 813.
7 Zhou J K, Pan Y, Chen X D. Materials Review A:Review Papers, 2013, 27(4), 72(in Chinese).
周继凯, 潘杨, 陈徐东.材料导报:综述篇, 2013, 27(4), 72.
8 Yu Z Q, Ma J, Ye G, et al. Construction and Building Materials, 2017, 144, 493.
9 Shi H S, Fang Z F. Journal of the Chinese Ceramic Society, 2004, 32(1), 95(in Chinese).
施惠生, 方泽锋.硅酸盐学报, 2004, 32(1), 95.
10 Li X, Yan P Y. Journal of Building Materials, 2010, 13(6), 787(in Chinese).
李响, 阎培渝. 建筑材料学报, 2010, 13(6), 787.
11 Fu Y Q, Xiao L Z, Shi W C. Journal of Wuhan Institute of Technology, 2016, 38(2), 152(in Chinese).
付雅琴, 肖莲珍, 史文冲.武汉工程大学学报, 2016, 38(2), 152.
12 Schöler A, Lothenbach B, Winnefeld F, et al. Cement & Concrete Composites, 2015, 55(55), 374.
13 Hu H M, Ma B G. Concrete Mineral Admixture, China Electric Power Press, China, 2016(in Chinese).
胡红梅, 马保国.混凝土矿物掺合料, 中国电力出版社, 2016.
14 Liu Z Y, Zhang Y S, Sun G W, et al. Journal of Civil Architectural and Environmental Engineering, 2012, 34(5), 148(in Chinese).
刘志勇, 张云升, 孙国文, 等.土木建筑与环境工程, 2012, 34(5), 148.
15 Feng S X, Wang P M. Journal of Building Materials, 2017, 20(3), 321(in Chinese).
丰曙霞, 王培铭.建筑材料学报, 2017, 20(3), 321.
[1] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[2] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[3] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[4] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[5] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[6] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[7] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[8] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[9] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[10] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[11] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[12] 朱学良, 魏智强, 白军善, 赵文华, 冯旺军, 姜金龙. 碳包覆氧化亚钴纳米颗粒的制备与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 621-625.
[13] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[14] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[15] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed