Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2376-2380    https://doi.org/10.11896/cldb.18050225
  无机非金属及其复合材料 |
弱碱激发超细粉煤灰水化产物结构分析
苏英1,2, 邱慧琼1, 贺行洋1,2, 杨进1,2, 王迎斌1,2, 曾三海1,2, Bohumír Strnadel1,3
1 湖北工业大学土木建筑与环境学院,武汉 430068;
2 湖北省建筑防水工程技术研究中心,武汉 430068;
3 奥斯特拉法技术大学冶金与材料工程学院先进科学研究中心,奥斯特拉发 70833,捷克
Structure Analysis on Hydration Products of Ultra-fine Fly Ash Activated by Weak Alkali
SU Ying1,2, QIU Huiqiong1, HE Xingyang1,2 ,YANG Jin1,2, WANG Yingbin1,2, ZENG Sanhai1,2, Bohumír Strnadel1,3
1 College of Civil Construction and Environment, Hubei University of Technology, Wuhan 430068;
2 Hubei Province Building Waterproof Engineering Research Center, Hubei University of Technology, Wuhan 430068;
3 Centre of Advanced and Innovation Technologies, Faculty of Metallurgy and Materials Engineering, V?B-Technical University of Ostrava,Ostrava-Poruba 70833, Czech Republic
下载:  全 文 ( PDF ) ( 3006KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 机械力化学法能够提升超细粉煤灰的活性,使其在弱碱下具有较好的激发潜力。本实验研究了弱碱电石渣对超细化粉煤灰(D50=2.5 μm)激发产物的影响规律,并与氢氧化钠激发进行比较。通过X射线衍射(XRD)仪、透射电子显微镜(TEM)、电感耦合等离子体发射光谱(ICP)仪和固体核磁共振(NMR)仪分别分析了不同碱性物质激发下粉煤灰水化产物的物相组成、体系中离子的溶出特性以及粉煤灰中玻璃相的聚合度变化情况。结果表明,超细粉煤灰在湿法研磨过程(6 h)中已经发生了早期水化反应,表现为明显的钙矾石和Ca2Al(OH)7·3H2O产物峰。XRD、TEM和ICP测试结果显示超细粉煤灰在电石渣激发下水化产物种类增多,结构致密;在NaOH激发下超细粉煤灰产生了沸石类产物,钙矾石类水化产物较少。NMR测试结果显示,粉煤灰中硅氧多面体网络结构由高聚态向低聚态转变,结构中较多的活性成分被激发并参与了早期的水化反应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏英
邱慧琼
贺行洋
杨进
王迎斌
曾三海
Bohumír Strnadel
关键词:  超细粉煤灰  弱碱激发  电石渣  氢氧化钠  水化产物    
Abstract: Mechanochemistry can enhance the activity of ultra-fine fly ash and endows it with better activation potential in weak alkalis. The impact of calcium carbide slag on the activation products of ultra-fine fly ash (D50=2.5 μm) was studied, and the activation products of sodium hydroxide were taken into comparison. Specifically, the phase composition of hydration products of the fly ash activated by different matters, the dissolution characteristics of ions in the system and the variation of the polymerization degree of the glass phase in the fly ash were tested and analyzed by means of XRD, TEM, ICP and NMR. It could be found from the results that early hydration reaction of ultra-fine fly ash had occurred in the wet grinding process (6 h), reflected by obvious product peaks of ettringite and hydrocalumite (Ca2Al(OH)7·3H2O) in XRD patterns. The results of XRD, TEM and ICP analyses indicated the increase in diversity of the hydration products of ultra-fine fly ash activated by calcium carbide slag, as well as the dense structure of the products. Under the activation of NaOH, zeolites products were generated from ultra-fine fly ash, accompanied by less ettringite hydration products. The results of NMR test showed that the structure of the silica polyhedron network in fly ash varied from high poly state to low poly state. More active ingredients in the system were activated and participated in the early hydration reaction.
Key words:  ultra-fine fly ash    activated by weak alkali    calcium carbide residue    sodium hydroxide    hydration products
                    发布日期:  2019-06-19
ZTFLH:  TU560.2520  
基金资助: 湖北省技术创新专项重大项目(2018AAA002)
通讯作者:  hexycn@163.com   
作者简介:  贺行洋,湖北工业大学教授,博士研究生导师。入选湖北省新世纪高层次人才工程(第二层次)、湖北省杰出青年人才计划。主要从事新型防水材料及工程结构耐久性等方面研究,主持国家自然科学基金3项、国防科工委创新项目1项、湖北省科技创新重大专项2项等课题,领导的课题组入选武汉市高新技术产业创新团队。发表SCI论文25篇(ESI高被引1篇);授权发明专利50项;出版专著2部;负责和参编行业标准各1部,获湖北省技术发明一等奖2项(排第1、第5)、湖北省教学成果奖一等奖1项(排第3)等省级奖励4项。苏英,湖北工业大学教授,硕士研究生导师。2005年博士毕业于中国建筑材料科学研究总院。主要从事固体废弃物资源化利用与新型建筑材料研究,先后主持国家自然科学基金、湖北省科技支撑计划等省部级以上课题10余项。发表论文30余篇;授权发明专利50余项;出版专著2部;参编国家标准1部;获湖北省技术发明一等奖2项。
引用本文:    
苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
SU Ying, QIU Huiqiong, HE Xingyang ,YANG Jin, WANG Yingbin, ZENG Sanhai, Bohumír Strnadel. Structure Analysis on Hydration Products of Ultra-fine Fly Ash Activated by Weak Alkali. Materials Reports, 2019, 33(14): 2376-2380.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050225  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2376
1 Gao L M. Performace research on alkali-activated fly ash cogulation materials. Master's Thesis, Harbin Institute of Technology, China, 2007(in Chinese).
高丽敏.碱激发粉煤灰胶凝材料性能研究.硕士学位论文,哈尔滨工业大学, 2007.
2 Fraay A L A,Bijen J M,Haan Y M D. Cement and Concrete Research, 1989, 19,235.
3 Liu J Q, Hao B, Yu J Y, et al. Materials Review,2014(s1),351.
刘进强, 郝斌, 郁建元,等.材料导报, 2014(s1),351.
4 Lei Q H. China Building Materials Science and Technology,2013(4),16(in Chinese).
雷清海.中国建材科技, 2013(4),16.
5 Li H, ZhuGe L J, Shi S, et al. Journal of the Chinese Ceramic Society,2012,40(2),234(in Chinese).
李辉, 诸葛丽君, 史诗,等. 硅酸盐学报, 2012,40(2),234.
6 Yi Z H, Jiang H Q, Wang X J, et al. Materials Review,2007(s3),278(in Chinese).
易志慧, 蒋海青, 王晓钧, 等.材料导报, 2007(s3),278.
7 Sun X L, Tang Q, Liu W H. Journal of Dalian University of Technology, 2017(6),75(in Chinese).
孙秀丽,童琦,刘文化.大连理工大学学报, 2017(6),75.
8 Sun X L, Wang S T, Yao J. Journal of Chongqing University, DOI:10.11835/j.issn.1000-582X.2018.06.007(in Chinese).
孙秀丽,王淑婷,姚君.重庆大学学报,DOI:10.11835/j.issn.1000-582X.2018.06.007.
9 Li D X. Materials Review,2001, 15(10),68(in Chinese).
李东旭.材料导报, 2001,15(10),68.
10 Wang X Q, Wang S S, Feng J J, et al. Bulletin of the Chinese Ceramic Society,2015,34(6),1554(in Chinese).
王晓庆, 王珊珊, 冯竟竟, 等.硅酸盐通报, 2015,34(6),1554.
11 Dong G, Chen Z C, Chen Y M, et al. Cement,2008(7),10(in Chinese).
董刚, 陈志成, 陈益民, 等.水泥,2008(7),10.
12 Zhao Y B. Clean Coal Technology, 2015(4),112(in Chinese).
赵永彬.洁净煤技术, 2015(4),112.
13 Zhou L X, Wang Q C. Bulletin of the Chinese Ceramic Society, 2011, 30(3),656(in Chinese).
周立霞, 王起才.硅酸盐通报, 2011,30(3),656.
14 Wang Y B, He X Y, Su Y, et al. Construction and Building Materials, 2018, 167,96.
15 贺行洋, 代飞, 苏英,等.中国专利,201610129735.3,2016.
16 Criado M,Torre A G D L,Aranda M A G, et al. Cement and Concrete Research, 2007,37(5),671.
17 Yang J B,Fang Y,Li D X. Bulletin of the Chinese Ceramic Society, 2017, 36(10), 3292(in Chinese).
杨敬斌, 方媛, 李东旭.硅酸盐通报,2017,36(10), 3292.
18 Chen Y, Han T Y, Deng Y F. Bulletin of the Chinese Ceramic Society, 2015,34(7),1864(in Chinese).
陈瑜, 韩汤益, 邓怡帆.硅酸盐通报,2015,34(7),1864.
19 García-Lodeiro I,Fernández-Jiménez A,Palomo A, et al. Journal of the American Ceramic Society, 2010, 93(7),1934.
20 Puligilla S,Mondal P . Cement and Concrete Research, 2013, 43(1),70.
21 Provis J L,Bernal S A. Annual Review of Materials Research, 2014, 44(44),299.
22 Zhang L, Zhang Q, Wang X P, et al. Concrete, 2011(2),66(in Chinese).
张磊, 张茜, 王雪平,等.混凝土,2011(2),66.
23 Li D X, Zhu J P, Li Z J, et al. Journal of the Chinese Ceramic Society, 2008(a01),170(in Chinese).
李东旭, 朱建平, 李宗津.硅酸盐学报,2008 (a01),170.
24 Feng S H, Li H, Wang J L, et al. Concrete,2009(3),38(in Chinese).
冯绍航, 李辉, 王建礼,等.混凝土,2009(3),38.
25 He X Y, Chen Y M, Qin S W, et al. Journal of Wuhan University of Technology, 2005,27(12),22(in Chinese).
贺行洋, 陈益民,秦守婉,等.武汉理工大学学报,2005,27(12),22.
26 Myers R J, Bernal S A, Nicolas R S, et al. Langmuir, 2013, 29(17),5294.
27 Puertas F, Palacios M, Manzano H, et al. Journal of the European Ceramic Society, 2011,31(12),2043.
28 Fernández-Jiménez A,Puertas F,Sobrados I, et al. Journal of the American Ceramic Society, 2003,86(8),1389.
[1] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[2] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[3] 余鑫, 于诚, 冉千平, 刘加平. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报, 2019, 33(14): 2337-2342.
[4] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[5] 何旸, 钱文勋, 张燕迟, 蔡跃波, 王新. 高速水流下空蚀热效应对水泥水化产物的破坏[J]. 材料导报, 2018, 32(24): 4281-4285.
[6] 王亚丽, 陈美娜, 崔素萍, 马晓宇. 稻壳灰-电石渣复合吸收剂的脱硫脱硝性能[J]. 材料导报, 2018, 32(22): 3995-3999.
[7] 李振国, 刘博, 吴运强, 王博, 郭江涛, 余四文. 碱式硫酸镁水泥耐酸腐蚀性能研究[J]. 材料导报, 2018, 32(16): 2733-2737.
[8] 赵思勰, 晏华, 汪宏涛, 李云涛, 张寒松, 胡志德. Na2SO4·10H2O对磷酸钾镁水泥水化硬化的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 187-192.
[9] 赵思勰, 晏华, 汪宏涛, 李云涛, 戴丰乐, 薛明, 胡志德. 复合无机水合盐对磷酸镁水泥水化及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 156-162.
[10] 吕生华, 孙立, 张佳, 胡浩岩, 雷颖, 侯永刚. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*[J]. CLDB, 2017, 31(23): 78-84.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed