Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4281-4285    https://doi.org/10.11896/j.issn.1005-023X.2018.24.013
  无机非金属及其复合材料 |
高速水流下空蚀热效应对水泥水化产物的破坏
何旸1,2, 钱文勋1,2, 张燕迟1,2, 蔡跃波1,2, 王新1,2
1 南京水利科学研究院,南京 210029;
2 水利部水工新材料工程技术研究中心,南京 210029
Thermal Effect on the Failure of Cement Hydration Products Under High Velocity Flow Cavitation
HE Yang1,2, QIAN Wenxun1,2, ZHANG Yanchi1,2, CAI Yuebo1,2, WANG Xin1,2
1 Nanjing Hydraulic Research Institute, Nanjing 210029;
2 Research Center on New Materials in Hydraulic Structures, Ministry of Water Resources, Nanjing 210029
下载:  全 文 ( PDF ) ( 1858KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着坝工技术的提高和水力资源的深入开发利用,高坝建设发展迅速,其泄量大、流速高时的泄洪消能和抗空蚀保护问题是目前建设中的主要技术难题。区别于传统对高速水流引发空蚀的力学破坏定义,本研究从热学角度阐述了空蚀引起破坏的机理。本研究利用超声波空蚀仪进行不同类型水泥净浆空蚀试验,综合空蚀破坏面表面分析和对空蚀破坏后的水泥水化产物微观成分分析,对空蚀在硬化水泥表面产生的热效应进行测定和研究分析,初步讨论空蚀热效应对混凝土结构的破坏机理。试验结果表明,空蚀对水泥净浆表面的破坏不仅是简单的力学破坏,同时空蚀热效应还可以造成水泥水化产物的部分分解。具体而言,经过6 h超声空蚀试验后的试样,水化凝胶损失量不低于40%,氢氧化钙的损失量在25%以上,这对硬化水泥浆体的劣化有较为显著的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何旸
钱文勋
张燕迟
蔡跃波
王新
关键词:  空蚀  热效应  水化产物    
Abstract: With the development of dam construction skills and further utilization of water power resources, the construction of high dams improves rapidly. It leads to a major problem of protection against the cavitation erosion caused by high velocity and large flow of flood discharge. Instead of the conventional way of mechanical analysis on cavitation, this paper was devoted to illustrate the thermal impact on the kind of erosion. Ultrasonic cavitation device was utilized for the test of various kinds of cement paste, with a combination analysis of erosion surface of hardened cement paste and micro-analysis of hydration product, the article studied the thermal effect of cavitation on the surface of hardened cement paste. The thermal effect of cavitation erosion on cement hydration products was initially discussed in this paper. Results indicated that cavitation erosion on cement paste is not only a simply mechanical failure but also conducts a thermal decomposition on hydration of cement, which could cause the partial decomposition of cement hydration products. To be specific, the mass loss of hydration gel substances is no less than 40% so as the loss of hydrated lime is more than 25% during a 6 hours ultrasonic cavitation experiment. In that way, the considerable hydration mass loss could lead to a significant impact on cement paste deterioration.
Key words:  cavitation    thermal effect    hydration products
                    发布日期:  2019-01-23
ZTFLH:  TU5  
基金资助: 国家重点研发计划(2016YFC0401610);国家自然科学基金(51479125;51479124)
通讯作者:  钱文勋:通信作者,男,1977年生,博士,教授级高工,主要从事水工新材料方向的研究   
作者简介:  何旸:男,1988年生,博士研究生,主要从事水工新材料方向的研究 E-mail:506662246@qq.com
引用本文:    
何旸, 钱文勋, 张燕迟, 蔡跃波, 王新. 高速水流下空蚀热效应对水泥水化产物的破坏[J]. 材料导报, 2018, 32(24): 4281-4285.
HE Yang, QIAN Wenxun, ZHANG Yanchi, CAI Yuebo, WANG Xin. Thermal Effect on the Failure of Cement Hydration Products Under High Velocity Flow Cavitation. Materials Reports, 2018, 32(24): 4281-4285.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.013  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4281
1 Zhou J P. Development of hydropower and dam construction in China[J].Journal of Hydraulic Engineering,2000(9):6(in Chinese).
周建平.中国水力发电的发展及大坝建设[J].水利学报,2000(9):6.
2 Momber A W. Short-time cavitation erosion of concrete[J].Wear,2000,241(1):47.
3 Van W L. Mechanics of collapsing cavitation bubbles[J].Ultrasonics Sonochemistry,2016,29:524.
4 Zhang J S. Cavitation damage and prevention measures of turbine in Yangling Hydropower Station[J].Mechanical & Electrical Technique of Hydropower Station,2006,29(6):25(in Chinese).
张建胜.杨凌水电站水轮机空蚀危害及防抗措施[J].水电站机电技术,2006,29(6):25.
5 Peshkovsky S L, Peshkovsky A S. Shock-wave model of acoustic cavitation[J].Ultrasonics Sonochemistry,2008,15(4):618.
6 Mitropetros K, Hieronymus H, Steinbach J. Single bubble ignition after shockwave impact[J].Chemical Engineering Science,2018,61(2):397.
7 Emil. A. B. Shock wave emission from laser-induced cavitation bubbles in polymer solutions[J].Ultrasonics,2008,48(5):423.
8 Hu Y Y. Numerical study of the VOF method and bubble collapse and cavitation flow [D].Beijing:Tsinghua University,2001(in Chinese).
胡影影.VOF方法的改进及空泡溃灭和空化流的数值研究[D].北京:清华大学,2001.
9 Wang Z Y, Long N D, Zhu J H. Review on material resistant to cavitation erosion and its application[J].Development and Application of Materials,2001,16(6):34(in Chinese).
王再友,龙霓东,朱金华.抗空蚀材料研究应用进展[J].材料开发与应用,2001,16(6):34.
10 Söhnholz H, Kurz T. Thermal effects upon collapse of laser-induced cavitation bubbles[C]∥International Symposium on Cavitation, Singapore,2012.
11 Xue W, Chen Z Y. The micro-cours of the cavitation erosion[J].Materials for Mechanical Engineering,2005,29(2):59(in Chinese).
薛伟,陈昭运.空蚀破坏的微观过程研究[J].大电机技术,2005,29(2):59.
12 Chen Z Y. The role of oxidization in cavitation damage[J].Journal of Harbin Engineering University,2007,28(9):1056(in Chinese).
陈昭运.空蚀破坏的微观氧化过程[J].哈尔滨工程大学学报,2007,28(9):1056.
13 Long T P, Carino N J. Review of mechanical properties of HSC at elevated temperature[J].Journal of Materials in Civil Engineering,1998,10(1):58.
14 Huang J T, Long Z M. Experimental study on cavitation corrosion resistance of silica fume concrete[J].Journal of Hydraulic Enginee-ring,1991,1(1):65(in Chinese).
黄继汤,龙再明.硅粉混凝土抗空蚀性能的试验研究[J].水利学报,1991,1(1):65.
15 Bonaccorsi E. Modular microporous minerals: Cancrinite-davyne group and CSH phases[J].Reviews in Mineralogy & Geochemistry,2005,57(1):241.
[1] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[2] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[3] 余鑫, 于诚, 冉千平, 刘加平. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报, 2019, 33(14): 2337-2342.
[4] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[5] 袁勃, 曾磊, 钱明芳, 张学习, 耿林. 形状记忆合金弹热效应研究进展[J]. 材料导报, 2018, 32(17): 3033-3040.
[6] 李振国, 刘博, 吴运强, 王博, 郭江涛, 余四文. 碱式硫酸镁水泥耐酸腐蚀性能研究[J]. 材料导报, 2018, 32(16): 2733-2737.
[7] 赵思勰, 晏华, 汪宏涛, 李云涛, 张寒松, 胡志德. Na2SO4·10H2O对磷酸钾镁水泥水化硬化的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 187-192.
[8] 赵思勰, 晏华, 汪宏涛, 李云涛, 戴丰乐, 薛明, 胡志德. 复合无机水合盐对磷酸镁水泥水化及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 156-162.
[9] 吕生华, 孙立, 张佳, 胡浩岩, 雷颖, 侯永刚. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*[J]. CLDB, 2017, 31(23): 78-84.
[10] 王歆钰, 镇思琦, 董正超, 仲崇贵. 铁电材料的电热效应及其研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 13-18.
[11] 孙丽丽, 王尊策, 王勇. AC-HVAF非晶和金属陶瓷涂层在压裂液中空蚀行为研究*[J]. 《材料导报》期刊社, 2017, 31(16): 89-93.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed