Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 78-84    https://doi.org/10.11896/j.issn.1005-023X.2017.023.010
  专题栏目:超高性能混凝土及其工程应用 |
具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*
吕生华1, 2, 孙立1, 张佳1, 胡浩岩1, 雷颖1, 侯永刚1
1 陕西科技大学轻工科学与工程学院,西安 710021;
2 轻化工程国家级实验教学示范中心(陕西科技大学),西安 710021
High/Ultra-high Performance Graphene Oxide/Cement-based Composites with Large-scale, Ordered and Compact Flower-like Microstructures
LU Shenghua1, 2, SUN Li1, ZHANG Jia1, HU Haoyan1, LEI Ying1, HOU Yonggang1
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology,Xi'an 710021;
2 National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi'an 710021;
下载:  全 文 ( PDF ) ( 1841KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过掺入氧化石墨烯(GO)及调控水灰比制备了高性能及超高性能水泥基复合材料,当水灰比为0.26及GO掺量为0.03%和0.05%时,水泥基复合材料的抗压强度和抗折强度分别为125.6 MPa、146.7 MPa和15.6 MPa、18.3 MPa。当水灰比为0.18及GO掺量为0.03%和0.05%时,水泥基复合材料的抗压强度和抗折强度分别为168.6 MPa、181.3 MPa和26.9 MPa、29.4 MPa。水泥基复合材料的抗渗透、抗冻融、抗碳化等性能得到了显著提高。通过SEM 观察水泥基体的微观形貌,发现水泥水化产物成为了形状规整的水化晶体,并且交织交联成为规整致密的花状微观形貌。XRD结果表明,规整形状水化晶体是由多种水泥水化晶体复合杂化形成的复合晶体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕生华
孙立
张佳
胡浩岩
雷颖
侯永刚
关键词:  高性能混凝土  氧化石墨烯  水化产物  微观结构    
Abstract: The high-and ultra-high-performance cement composites (HPC and UHPC) were prepared by doping graphene oxide (GO) and varying water-cement ratio. When water-cement ratio is 0.26 and GO dosage is 0.03% and 0.05%, the compressive and flexural strength of HPC were 125.6 MPa, 146.7 MPa and 15.6 MPa, 18.3 MPa, respectively. And while water-cement ratio is 0.18 and with 0.03% and 0.05% GO, the compressive and flexural strength were 168.6 MPa, 181.3 MPa and 26.9 MPa and 29.4 MPa, respectively. The penetration resistance, freeze-thaw resistance and carbonation resistance of the cement composites got remarkably improved by properly adding GO. The regular-shaped crystals of cement hydration products which gathered to form ordered and compact microstructures were observed in SEM microscopic morphology. XRD results indicated that the regular-shaped hydration crystals were constructed by complexing and hybridizing.of cement hydration crystals.
Key words:  high-performance concete    graphene oxide    hydration products    microstructure
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528.572  
基金资助: *陕西省科技统筹资源引导项目(2016KTCL01-14); 国家自然科学基金面上项目(21276152)
作者简介:  吕生华:1963年生,博士,教授,博士研究生导师,主要研究方向为氧化石墨烯的制备及应用,水泥基材料的结构与性能 E-mail: lvsh@sust.edu.cn
引用本文:    
吕生华, 孙立, 张佳, 胡浩岩, 雷颖, 侯永刚. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*[J]. CLDB, 2017, 31(23): 78-84.
LU Shenghua, SUN Li, ZHANG Jia, HU Haoyan, LEI Ying, HOU Yonggang. High/Ultra-high Performance Graphene Oxide/Cement-based Composites with Large-scale, Ordered and Compact Flower-like Microstructures. Materials Reports, 2017, 31(23): 78-84.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.010  或          http://www.mater-rep.com/CN/Y2017/V31/I23/78
1 Mo Zongyun, Gao Xiaojian. Research progress on the durability of metakaolin concrete[J].Mater Rev:Rev,2017,31(8):115(in Chinese).
莫宗云,高小建.偏高岭土改性混凝土的耐久性研究进展[J].材料导报:综述篇,2017,31(8):115.
2 Liu Junliang,Xu Jinyu,Ren Weibo,et al.Dynamic mechanical pro-perties of early-strength fiber reinforced concrete at different ages[J].Mater Rev:Res,2016, 30(12):157(in Chinese).
刘俊良,许金余,任韦波,等.纤维早强混凝土不同龄期的动态力学性能[J].材料导报:研究篇,2016,30(12):157.
3 Ngo T T,Park J K,Pyo S,et al.Shear resistance of ultra-high-performance fiber-reinforced concrete [J]. Costruction Building Mater,2017,151:246.
4 Lian Huizhen. Reconsidered on the high performance concrete [J]. China Concrete, 2010(12):8(in Chinese).
廉慧珍.对高性能混凝土的再反思[J]. 混凝土世界,2010(12):8.
5 Wang Dehui, Shi Caijun, Wu Linmei. Research and applications of ultra-high performance concrete (UHPC) in China[J]. Bull Chin Ceram Soc, 2016,35(1):142(in Chinese).
王德辉,史才军,吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报,2016,35(1):142.
6 Chen Baochun, Ji Tao, Huang Qingwei, et al. Review of research on ultra-high performance concrete[J]. J Achitecture Civil Eng,2014,31(3):1(in Chinese).
陈宝春,季韬,黄卿维,等.超高性能混凝土研究综述[J].建筑科学与工程学报,2014,31(3):1.
7 Yu R, Song Q L,Wang X P. Sustainable development of ultra-high performance fibre reinforced concrete (UHPFRC): Towards to an optimized concrete matrix and efficient fibre application[J].J Cleaner Production,2017,162:220.
8 Xu Libin,Dong Yi,Chen Shangwei.Research on the m ixture ratio design of ultra-high perform ance concrete[J].Concrete,2015(1):72(in Chinese).
徐立斌,董艺,陈尚伟. 超高性能混凝土的配合比设计研究[J].混凝土,2015(1):72.
9 Wan Chaojun, Yin Yaliu, Wang Xiaoqian, et al. Preparation of ultra-high performance concrete[J]. Bull Chin Ceram Soc, 2015,34(12):3676(in Chinese).
万朝均,尹亚柳,王小茜, 等. 超高性能混凝土的制备[J].硅酸盐通报,2015,34(12):3676.
10 Qin Xiaochuan,Meng Shaoping. Relationship between mesoscopic freeze-thaw damage and compressive strength of high-strength concrete materials[J]. Mater Rev: Res, 2017,31(1):117(in Chinese).
秦晓川,孟少平.高强混凝土材料细观冻融损伤与抗压强度的关系[J].材料导报:研究篇,2017,31(1):117.
11 Biskri Y, Achoura D, Chelghoum N, et al. Mechanical and durabi-lity characteristics of high performance concrete containing steel slag and crystalized slag as aggregates[J].Construction Building Mater, 2017, 150:167.
12 Nilforoush R,Nilsson M.Experimental evaluation of tensile beha-viour of single cast-in-place anchor bolts in plain and steel fibre-reinforced normal-and high-strength concrete[J].Eng Structures, 2017,147:195.
13 Shin H O, Min K H, Mitchell D. Confinement of ultra-high-performance fiber reinforced concrete columns[J].Compos Structures,2017,176:124.
14 Wijayawardane I S K.Flexural behaviour of glass fibre-reinforced polymer and ultra-high-strength fibre-reinforced concrete composite beams subjected to elevated temperature[J].Adv Structure Eng, 2017, 20(9):1357.
15 Luccioni B, Isla F, Codina R, et al. Effect of steel fibers on static and blast response of high strength concrete[J].Int J Impact Eng, 2017,107:23.
16 Atmaca N,Abbas M L.Effects of nano-silica on the gas permeability, durability and mechanical properties of high-strength lightweight concrete[J].Construction Building Mater,2017, 147:17.
17 Huang Zhengyu, Zu Tianyu. Influence of nano-CaCO3 on ultra high performance concrete [J]. Bull Chin Ceram Soc, 2013, 32(6):1104(in Chinese).
黄政宇,祖天钰. 纳米CaCO3对超高性能混凝土性能影响的研究[J].硅酸盐通报,2013,32(6):1104.
18 Lv S H,Ma Y J, Qiu C C, et al. Effect of graphene oxide nano-sheets of microstructure and mechanical properties of cement compo-sites [J]. Construction Building Mater, 2013, 49:121.
19 Lv S H, Liu J J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J].Construction Building Mater, 2014, 64:231.
20 Lv S H, Deng L J, Yang W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites using copolymerization, for reinforcing and toughening cement composites[J].Cem Concr Compos, 2016,66:1.
[1] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[2] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[3] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[4] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[5] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[6] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[7] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[8] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[9] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[10] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[11] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[12] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[13] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[14] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[15] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed