Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2337-2342    https://doi.org/10.11896/cldb.18050118
  无机非金属及其复合材料 |
基于Rietveld外标法的水泥及其水化产物定量分析
余鑫1, 于诚1, 冉千平1, 刘加平2
1 江苏苏博特新材料股份有限公司,高性能土木工程材料国家重点实验室,南京 211103;
2 东南大学材料科学与工程学院,南京 211189
Quantitative Analysis of Cement and Its Hydration Product by Rietveld External Standard Method
YU Xin1, YU Cheng1, RAN Qianping1, LIU Jiaping2
1 State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103;
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 3011KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 结合Rietveld外标法定量分析原理,在不掺加标样的情况下实现对含有非晶相的水泥及其水化产物的快速检测定量分析。首先利用已知组成的样品研究了Rietveld外标法的准确性,然后对比分析了水泥的外标法与内标法的定量结果,接着对水泥水化产物进行了定量分析,并与热重法测定结果进行比较。结果表明:已知组成样品的定量结果与实际配制值具有良好的一致性。水泥的外标法定量结果平均值与内标法结果接近,但外标法定量结果的标准差更小、数据波动小,水泥水化产物定量结果中氢氧化钙含量与热重定量分析结果基本一致。此外,外标法制样过程也得到了简化,因而在对水泥及其水化产物进行定量分析时更具优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余鑫
于诚
冉千平
刘加平
关键词:  Rietveld外标法  水泥  水化产物  定量分析    
Abstract: Combined with the quantitative analysis theory of Rietveld external standard method, quantitative analysis of cement and its hydration product with amorphous phase was carried out without mixing internal standard sample. The accuracy of the method was investigated by samples of known composition. Quantitative analysis results of cement by external standard method and internal standard method were compared and analyzed. Hydration products of cement were also quantified by the method and compared with the thermogravimetric analysis results. Results indicate that quantitative analysis values by external standard method show good agreement with the actual mixing ratios of samples. The mean va-lues of quantitative analysis results by two methods are close, but the standard deviation of external standard method is smaller. The content of calcium hydroxide in the quantitative results of hydration products is consistent with that of thermogravimetric analysis. Besides, the sample pre-paration process of external standard method is also simplified to ensure a more preferred application in the quantitative analysis of cement and its hydration product.
Key words:  Rietveld external standard method    cement    hydration product    quantitative analysis
                    发布日期:  2019-06-19
ZTFLH:  TQ172.1  
基金资助: 国家重点研发计划项目(2017YFB0310000);国家自然科学基金(51408270)
通讯作者:  yucheng@cnjsjk.cn   
作者简介:  余鑫,男,硕士,工程师。2016年毕业于大连理工大学,同年入职江苏苏博特新材料股份有限公司从事技术研发工作至今,主要研究水泥基材料的水化和无机材料测试分析方法应用等。于诚,男,博士,高级工程师。2003年8月至2013年6月,在东南大学获得材料学专业学士学位和博士学位,其中2009年10月至2011年12月,在瑞士洛桑联邦理工学院(EPFL)材料系土木工程材料实验室(LMC)联合培养。2013年7月入职江苏苏博特新材料股份有限公司从事技术研发工作至今,主要从事水泥水化、混凝土耐久性、水泥基材料微观结构表征方面的研究工作。
引用本文:    
余鑫, 于诚, 冉千平, 刘加平. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报, 2019, 33(14): 2337-2342.
YU Xin, YU Cheng, RAN Qianping, LIU Jiaping. Quantitative Analysis of Cement and Its Hydration Product by Rietveld External Standard Method. Materials Reports, 2019, 33(14): 2337-2342.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050118  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2337
1 Hong H L, Chen J J, Yang S Z, et al. Journal of Instrumental Analysis, 2001, 20(2), 5(in Chinese).
洪汉烈,陈建军,杨淑珍,等.分析测试学报, 2001, 20(2), 5.
2 Hong H L, Zhao M Q. Analysis Instruments, 2001(2),21(in Chinese).
洪汉烈,赵曼曲.分析仪器, 2001(2), 21.
3 Chen F S, Xu L L, Zhang Z B. Bulletin of the Chinese Ceramic Society, 2009,28(6),1295(in Chinese).
陈福松,徐玲玲,张志宾.硅酸盐通报, 2009, 28(6), 1295.
4 Xu Y M, Xu L L, Li W W. Journal of Nanjing University of Technology (Natural Science Edition), 2014, 36(5), 30(in Chinese).
许彦明,徐玲玲,李文伟.南京工业大学学报(自然科学版), 2014, 36(5),30.
5 Jiang Y H, Huang S Y. Journal of the Chinese Ceramic Society, 1984(3), 374(in Chinese).
蒋永惠,黄士元.硅酸盐学报, 1984 (3), 374.
6 Shan X B, Zhang Q T, Li Y H. Physical Testing and Chemical Analysis Part A: Physical Testing, 2002, 38(8), 342(in Chinese).
单小兵,张其土,李玉华.理化检验(物理分册), 2002, 38(8), 342.
7 Wu J P, Huang J F, He H Y, et al. Rock and Mineral Analysis, 2006, 25(3), 215(in Chinese).
吴建鹏,黄剑锋,贺海燕,等.岩矿测试, 2006, 25(3), 215.
8 Li H, Sun W, Liu J P. Concrete, 2013(1), 1(in Chinese).
李华,孙伟,刘加平.混凝土, 2013 (1), 1.
9 Wang P M, Xu L L, Zhang G F. Materials Review B:Research Papers, 2011, 25(9), 129(in Chinese).
王培铭,徐玲琳,张国防.材料导报:研究篇, 2011, 25(9), 129.
10 Scrivener K L, Füllmann T, Gallucci E, et al. Cement and Concrete Research, 2004, 34(9), 1541.
11 Yao W, Wei Y Q, Wang W. Journal of Building Materials, 2012, 15(5), 581(in Chinese).
姚武,魏永起,王伟.建筑材料学报, 2012, 15(5), 581.
12 Gan Y L, Jin T N, Nie G L, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(7), 1803(in Chinese).
甘延玲,金头男,聂光临,等.硅酸盐通报, 2015, 34(7), 1803.
13 Rietveld H M. Journal of Applied Crystallography, 1969, 2(2), 65.
14 Young R A, Mackie P E, Von Dreele R B. Journal of Applied Crystallography, 1977, 10(4), 262.
15 Hill R J, Howard C J. Journal of Applied Crystallography, 1987, 20(6), 467.
16 Bish D L, Howard S A. Journal of Applied Crystallography, 1988, 21(2), 86.
17 Scrivener K, Snellings R, Lothenbach B. A practical guide to microstructural analysis of cementitious materials, CRC Press, USA,2015.
18 O′Connor B H, Raven M D. Powder Diffraction, 1988, 3(1), 2.
19 Suherman P M, van Riessen A, O′Connor B, et al. Powder Diffraction, 2002, 17(3), 178.
20 Jansen D, Stabler C, Goetz-Neunhoeffer F, et al. Powder Diffraction, 2011, 26(1), 31.
21 Prince E. International tables for crystallography, volume C: Mathematical, physical and chemical tables, Springer, Netherlands, 2006.
22 Wang P M, Zhao P Q, Liu X P. Journal of Building Materials, 2015, 18(4), 692(in Chinese).
王培铭,赵丕琪,刘贤萍.建筑材料学报, 2015, 18(4), 692.
[1] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[2] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[3] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[4] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[5] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[6] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[7] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[8] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[9] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[10] 赵丕琪, 梁辰, 孙传奎, 刘红花, 王守德, 芦令超. 基于Rietveld/XRD(内标法)水泥浆体物相演变定量表征与非晶定量公式修正[J]. 材料导报, 2019, 33(4): 644-649.
[11] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[12] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[13] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[14] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[15] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed