Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2370-2375    https://doi.org/10.11896/cldb.18060063
  无机非金属及其复合材料 |
自干燥及水分扩散引起的高性能混凝土内部湿度演变
常洪雷1, 金祖权2, 刘健1
1 山东大学齐鲁交通学院,济南 250002;
2 青岛理工大学土木工程学院,青岛 266033
Relative Humidity Evolution of High Performance Concrete Caused by Self-desiccation and Moisture diffusion
CHANG Honglei1, JIN Zuquan2, LIU Jian1
1 School of Qilu Transportation, Jinan 250002;
2 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033
下载:  全 文 ( PDF ) ( 2937KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究自干燥和水分扩散作用对高性能混凝土内部湿度演变的影响,将高性能混凝土分别暴露于自干燥环境和恒温恒湿环境中,并测试了混凝土的内部湿度演变规律。研究结果表明:自干燥引起的高性能混凝土内部湿度衰减主要发生在龄期28 d内,而水分扩散的影响则主要在龄期14 d内。掺粉煤灰可以显著降低因自干燥和水分扩散而引起的湿度衰减,并使基体保持至少8 d的水汽饱和阶段,而掺矿粉则会加快内部湿度衰减。高性能混凝土早期内部湿度演变主要受自干燥控制,而当掺加50%粉煤灰时,水分扩散才是主导作用。此外,随着水胶比的增大或深度的减小,自干燥对内部湿度下降的影响逐渐减小,水分扩散的影响则逐渐增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常洪雷
金祖权
刘健
关键词:  高性能混凝土  湿度  自干燥  水分扩散    
Abstract: In order to explore the influence of self-desiccation and moisture diffusion on the internal humidity evolution of high performance concrete, specimens were subjected to self-desiccation condition and constant temperature and humidity condition. Then the evolution law of humidity under above conditions was systematically investigated. The results show that the internal humidity decrement caused by self-desiccation mainly occurs within the age of 28 d while that triggered by moisture distribution mainly occurs within the age of 14 d. Besides, the adding of fly ash decreases humidity decrement significantly either induced by self-desiccation or moisture diffusion and makes the matrix stay in the moisture saturation phase for at least 8 d. However, the mixture of ground granulated blast furnace slag accelerates internal humidity decrement. Moreover, the evolution of internal humidity is dominated by self-desiccation in the early stage, and when the dosage of fly ash was 50%, moisture diffusion takes the lead. Furthermore, with increase of water to binder ratio or the decrease of depth, the percentage of self-desiccation influence on humidity decrement descends gradually accompanied by the increasing proportion of moisture diffusion influence.
Key words:  high performance concrete    humidity    self-desiccation    moisture diffusion
                    发布日期:  2019-06-19
ZTFLH:  TU528.01  
基金资助: 国家973项目(2015CB655100); 国家自然科学基金(51178230; 51378269;5142010501); 山东大学基本科研业务费专项资金资助项目(31560078614117)
通讯作者:  jinzuquan@126.com   
作者简介:  金祖权,青岛理工大学土木工程学院教授,博士研究生导师。1998年6月毕业于焦作工学院。2003年6月毕业于河南理工大学,获得工学硕士学位。2006年6月毕业于东南大学,获得工学博士学位。2009—2011年在中科院海洋研究所从事博士后研究工作。2014—2015年在英国伦敦大学学院访学,曾获“霍英东青年教师奖”。主要从事海洋环境混凝土耐久性以及高性能混凝土制备技术的研究。近年来在混凝土材料及结构领域发表论文50余篇,包括 《硅酸盐学报》、 Cement and Concrete Research、 Construction and Building Materials、 Corrosion Science Journal of Advanced Concrete Technology等。常洪雷,2018年博士毕业于东南大学,现为山东大学助理研究员、硕士生导师。主要从事高性能水泥基材料制备、耐久性及劣化机理的研究。参与多项国家基金项目,发表学术论文18篇,其中被土木工程材料领域顶级期刊Cement and Concrete Research、Cement and Concrete Compo-sites等SCI收录6篇。
引用本文:    
常洪雷, 金祖权, 刘健. 自干燥及水分扩散引起的高性能混凝土内部湿度演变[J]. 材料导报, 2019, 33(14): 2370-2375.
CHANG Honglei, JIN Zuquan, LIU Jian. Relative Humidity Evolution of High Performance Concrete Caused by Self-desiccation and Moisture diffusion. Materials Reports, 2019, 33(14): 2370-2375.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060063  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2370
1 Soliman A M, Nehdi M L. Materials and Structures, 2011, 44, 878.
2 Parrott L J. Magazine of Concrete Research, 1991, 43(154), 45.
3 Terrill J M, Richardson M, Sekby A R. Magazine of Concrete Research, 1986, 38 (137), 220.
4 Kima Jin-Keun,Lee Chil-Sung. Cement and Concrete Research, 1999,29, 1921.
5 Akita H, Fujiwara T, Ozaka Y. Magazine of Concrete Research, 1997, 49 (179), 129.
6 Neveille A, Pierre-Claude Aitcin. Materials and Structures, 1988, 206(31), 111.
7 Persson B. Materials and Structures, 1997, 199(30), 293.
8 Ahmed Loukili, Abdelhafid Khelidj, Pierre Richard. Cement and Concrete Research, 1999, 29, 577.
9 Uchikawa H, Hanehara S, Hirao H. ACI Special Publications, 1997, 2, 949.
10 Jiang Z W, Sun Z P, Wang P M. Journal of the Chinese Ceramic Society, 2003, 31(8), 770(in Chinese).
蒋正武, 孙振平, 王培铭. 硅酸盐学报, 2003, 31(8), 770.
11 Jiang Z W, Wang P M. Journal of Wuhan University of Technology, 2003, 25(7), 18(in Chinese).
蒋正武, 王培铭. 武汉理工大学学报, 2003, 25(7), 18.
12 Benz D P. Cement and Concrete Research, 2008, 38, 196.
13 Jiang Z W, Sun Z P, Wang P M. Fly Ash Comprehensive Utilization, 2003(2), 16(in Chinese).
蒋正武, 孙正平, 王培铭. 粉煤灰综合利用, 2003(2), 16.
14 Jiang Zhengwu, Sun Zhenping,Wang Peiming. Cement and Concrete Research, 2006,36, 320.
15 Huang Y, Qi K, Zhang J. Journal of Tsinghua University (Science and Technology), 2007, 47(3), 309(in Chinese).
黄瑜, 祁锟, 张君. 清华大学学报(自然科学版), 2007, 47(3), 309.
16 Zhang J, Chen H Y, Hou D W. Journal of Building Materials, 2011, 14(3), 227(in Chinese).
张君, 陈浩宇, 侯东伟. 建筑材料学报, 2011, 14(3), 227.
17 Yuan R Z. Cementious materials science, Wuhan University of Technology Press, China, 1996(in Chinese).
袁润章. 胶凝材料学, 武汉理工大学出版社, 1996.
18 Yao Y M, Shi H S, Shi T. Cement, 2006, 9(4), 1(in Chinese).
姚玉梅, 施惠生, 施韬. 水泥, 2006, 9(4), 1.
[1] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[2] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[3] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[4] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[5] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[6] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型[J]. 《材料导报》期刊社, 2018, 32(3): 496-502.
[7] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[8] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅰ:原材料和配合比设计方法[J]. 《材料导报》期刊社, 2018, 32(1): 159-166.
[9] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[10] 张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
[11] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[12] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[13] 吕生华, 孙立, 张佳, 胡浩岩, 雷颖, 侯永刚. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*[J]. CLDB, 2017, 31(23): 78-84.
[14] 张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
[15] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed