Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 271-276    https://doi.org/10.11896/cldb.201902013
  无机非金属及其复合材料 |
微波养护对掺矿渣超高性能混凝土力学性能的影响及机理
高小建1,2, 李双欣1,2
1 哈尔滨工业大学土木工程学院, 哈尔滨 150001
2 结构工程灾变与控制教育部重点实验室,哈尔滨 150001
Effects of Microwave Curing on the Mechanical Properties of Ultra-high
Performance Concrete and Affecting Mechanism
GAO Xiaojian1,2, LI Shuangxin1,2
1 School of Civil Engineering, Harbin Institute of Technology, Harbin 150001
2 The Key Laboratory of Structural Engineering Catastrophe and Control of the Ministry of Education, Harbin 150001
下载:  全 文 ( PDF ) ( 2626KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)是继高强度、高性能混凝土之后新近发展起来的一类新型混凝土材料。UHPC自身具备超高强度及高耐久性等优点,使其在高层、超高层建筑、大跨度空间结构与恶劣腐蚀环境下的重大土木工程中有广阔应用前景。本工作从材料制备角度,通过矿物掺合料改变UHPC基本配合比并且采用效率更高的微波养护方式对试件进行养护。通过一系列实验,观察矿渣的使用和微波养护对UHPC力学性能的影响,并通过微观表征分析研究其影响机理。制备了10%、25%、50%、70%和90%矿渣取代基本配合比中水泥部分用量试件,采用3 d延迟微波养护制度养护,测试3 d及28 d强度,随后选取性能典型试件进行29Si NMR、27Al NMR和XRD分析。实验发现标准养护下UHPC强度随着矿渣掺入而降低,但微波养护通过加速矿渣水化反应加强了混凝土力学强度发展进程。该加强效应对早期性能发展的影响更显著,且随着矿渣掺量增加而增强。微观表征分析首先确定了微波养护对试样水化的加速作用,并促进了晶体产物和短链C-S-H的形成,达到进一步克服矿渣对UHPC强度发展的延迟作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高小建
李双欣
关键词:  超高性能混凝土  矿物掺合料  微波养护  力学性能  微观机理    
Abstract: Ultra-high performance concrete (UHPC) is, after high strength concrete and high performance concrete, the newly developed concrete, which possesses high strength and high durability, ect. It has a significant application potential in the construction of high rise, super high-rise buildings, large span structure and the civil projects under harsh corrosive environment. In the perspective of material preparation, ultra-high performance concrete (UHPC) was added with mineral admixture and was treated with microwave curing, more efficient curing method. The effect of mineral admixture and microwave curing method on the strength was studied, as well as the affecting mechanism through the microstructural characterization. The cement in UHPC has been partially replaced by blast furnace slag (BFS) in the weight percentages of 10%,30%,50%,70% and 90%. Three days delayed microwave curing regime was adapted. After the samples were tested for strength, some typical samples were selected to be examined with 29Si and 27Al NMR and XRD. It was found that, under the standard curing, the compressive strength reduced with the addition of BFS, but the microwave curing enhanced the development of strength through accelerating the hydration of BFS. The acceleration effects were more significant with the early age samples; moreover, it increased with the addition of BFS increasing. The microstructural characterization confirmed the acceleration of hydration by microwave curing, and showed that the formation of crystalline phases and C-S-H with short chains were increased, which both help overcoming the retarded effects by the addition of BFS.
Key words:  ultra-high performance concrete    mineral admixture    microwave curing    mechanical property    microstructure
                    发布日期:  2019-01-31
ZTFLH:  TU528.31  
基金资助: 黑龙江省博士后资助基金(LBH-Z14094)
作者简介:  高小建,哈工学土木工程学院教授,导师。李双欣,2012毕业于英国利兹大学,获得土木工程学位 sli2015@sina.com
引用本文:    
高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
GAO Xiaojian, LI Shuangxin. Effects of Microwave Curing on the Mechanical Properties of Ultra-high
Performance Concrete and Affecting Mechanism. Materials Reports, 2019, 33(2): 271-276.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902013  或          http://www.mater-rep.com/CN/Y2019/V33/I2/271
1 Leung C K Y, Pheeraphan T. Construction and Building Materials,1995(9),67.
2 Yang Y B, Wen Z Y. Low Temperature Architecture Technology,2011(3):63(in Chinese).
杨医博,文梓芸.低温建筑技术,2011(3),63.
3 Zhao Q, Du J F. Shanxi Architecture,2004,24(30),100(in Chinese).
赵权,杜俊芳.山西建筑,2004,24(30),100.
4 Hutchison R G, Chang J T, Jennings H M, et al. Cement and Concrete Research,1991,21(5),795.
5 Kafry I D. Direct Electric Curing of Concrete: Basic Design, Whittles Publishing Services, Scotland,1993.
6 Wu X, Dong J, Tang M. Cement and Concrete Research,1987,17(2),205.
7 Osborne G J. Cement and Concrete Composites,1999,21(1),11.
8 Page C L, Short N R, Ei Tarras A. Cement and Concrete Research,1981,11(3),395.
9 Ramezanianpour A A, Malhotra V M. Cement and Concrete Composites,1995,17(1995),125.
10 Puertas F, Martínez-Ramírez S, Alonso S, et al. Cement and Concrete Research,2000,30(10),1625.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed