Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 103-108    https://doi.org/10.11896/j.issn.1005-023X.2017.023.014
  专题栏目:超高性能混凝土及其工程应用 |
超高性能混凝土动态冲击拉伸性能研究*
张文华1, 2, 3, 陈振宇1
1 南京林业大学土木工程学院,南京210037;
2 江苏省建筑科学研究院,南京210008;
3 东南大学土木工程学院,南京211189
A Study of the Dynamic Tensile Property of Ultra-high Performance Concrete
ZHANG Wenhua1, 2, 3, CHEN Zhenyu1
1 School of Civil Engineering, Nanjing Forestry University, Nanjing 210037;
2 Jiangsu Research Institute of Building Science, Nanjing 210008;
3 School of Civil Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 1678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(Ultra-high performance concrete,UHPC)作为一种具有超高物理力学性能的新型建筑材料,能显著提高军事防护工程的抗爆炸冲击能力,对保障防护工程中人员的生命安全具有重要意义。为揭示爆炸冲击波在防护工程自由面引起的动态拉伸破坏行为,利用霍普金森压杆装置(Split Hopkinson pressure bar,SHPB)对UHPC进行动态冲击拉伸试验,系统研究了粗集料种类、钢纤维掺量以及应变率对UHPC动态冲击拉伸性能的影响规律。结果表明:粗集料种类对UHPC的动态冲击拉伸强度有较显著的影响,相比于花岗岩和铁矿石,玄武岩粗集料对动态冲击拉伸性能的提高更为明显; UHPC的动态冲击拉伸强度会随着钢纤维掺量的增加而显著提高,但钢纤维掺量对UHPC动态拉伸强度的贡献存在4% 的临界值;此外,UHPC表现出明显的应变率效应,当应变率为 7~50 s-1 时,其效应最为显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文华
陈振宇
关键词:  超高性能混凝土  动态冲击拉伸性能  应变率效应  粗集料  钢纤维    
Abstract: As a kind of construction material with superior mechanical properties, ultra-high performance concrete (UHPC) can notably enhance the impact resistance of properties, which is of great significance to the life security under the military protective engineering. To reveal the principle of dynamic tensile fracture caused by explosive shock wave on the free surface of protective engineering, this paper, which is based on a series of spallation experiments using the split Hopkinson pressure bar, studies the impact of coarse aggregate type, content of steel fiber and strain rate on dynamic tensile property of UHPC. Results showed that coarse aggregate type has a marked influence on spall strength. Compared with that of granite and iron ore, the impact of basalt is the most remarkabale. Besides, with the increase of steel fiber content, the dynamic tensile property is improved notably. However, there exists a limitation on the contribution to the spall strength, approximately 4%. As to the impact of the strain rate, UHPC displays a remarkable strain rate effect, especially when the strain rate varies from 7 s-1 to 50 s-1.
Key words:  ultra-high performance concrete    dynamic tensile property    strain rate effect    coarse aggregate    steel fiber
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  O347.3  
基金资助: *国家自然科学基金面上项目(51678309); 江苏省自然科学基金面上项目(BK20161529); 中国博士后基金面上项目(2016M600351); 江苏省博士后基金面上项目(1601028B)
作者简介:  张文华:1982年生,博士,副教授,主要研究方向为超高性能混凝土动态力学行为 E-mail:zhangwenhua2009@163.com
引用本文:    
张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
ZHANG Wenhua, CHEN Zhenyu. A Study of the Dynamic Tensile Property of Ultra-high Performance Concrete. Materials Reports, 2017, 31(23): 103-108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.014  或          http://www.mater-rep.com/CN/Y2017/V31/I23/103
1 钱七虎, 刘光寰, 徐飞,等. 高技术局部战争条件下的工程防护[M]∥钱七虎院士论文选集. 北京:科学出版社, 2007.
2 葛鹏. 简述常规武器、核武器及其对防护工程的破坏效应[J]. 中小企业管理与科技(下旬刊), 2012(9): 312.
3 Wang X H, Wei D F, Wang M Y, et al. Development and countermeasure of protective engineering under information war[J]. J PLA University of Science and Technology(Natural Science), 2004,5(6): 37(in Chinese).
汪新红,魏登仿,王明洋,等. 信息化战争条件下防护工程的发展与对策[J]. 解放军理工大学学报(自然科学版), 2004,5(6): 37.
4 Chen B C, Ji T, Huang Q W, et al. Review of research on ultra-high performance concrete[J]. J Architecture Civil Eng, 2014,31(3): 1(in Chinese).
陈宝春,季韬,黄卿维,等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014,31(3): 1.
5 Wang D H, Shi C J, Wu L M. Research and applications of ultra-high performance concrete (UHPC) in China[J]. Bull Chinese Ceram Soc, 2016,35(1): 141(in Chinese).
王德辉,史才军,吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016,35(1): 141.
6 红亮. 新型超高性能混凝土的力学性能及工程运用研究[J]. 企业导报, 2012(23): 252.
7 赵筠,廉慧珍. 关于超高性能混凝土(UHPC)的问答[J]. 混凝土世界, 2016(4): 98.
8 Dong J K, Park S H, Ryu G S, et al. Comparative flexural behavior of Hybrid ultra high performance fiber reinforced concrete with different macro fibers[J]. Construction Building Materials, 2011, 25(11):4144.
9 钱七虎. 战略防护工程面临的核钻地弹威胁及连续介质力学模型的不适用性[C]∥第五届全国工程结构安全防护学术会议.南京,2007.
10 Lai J Z. Dynamic mechanical behaviour of ultra-high performance fiber reinforced concretes[J]. J Wuhan University of Technology(Materials Science Edition), 2008,23(6): 938.
11 Lai J Z, Sun W. The spalling behaviour of reactive powder concrete[J]. Eng Mechan, 2009,26(1): 137(in Chinese).
赖建中,孙伟. 活性粉末混凝土的层裂性能研究[J]. 工程力学,2009,26(1): 137.
12 Lai J Z, Sun W, Jiao C J, et al. Dynamic mechanical properties of ecological reactive powder concrete[J].Ind Construction, 2004,34(12): 63(in Chinese).
赖建中,孙伟,焦楚杰,等. 生态型RPC材料的动态力学性能[J]. 工业建筑, 2004,34(12): 63.
13 Rong Z D, Sun W. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites[J].Explosion Shock Waves, 2009,29(4): 361(in Chinese).
戎志丹,孙伟. 粗集料对超高性能水泥基材料动态力学性能的影响[J]. 爆炸与冲击, 2009,29(4): 361.
14 Zhu C Y, Zhang Y S, Gao J M. Preparation of the ultra-high performance concrete and study on its physical and mechanical properties[J]. China High Concr Cem Products, 2010(1): 13(in Chinese).
朱春银,张云升,高建明. 超高性能混凝土的制备与物理力学性能研究[J]. 混凝土与水泥制品, 2010(1): 13.
15 佘伟,张云升,戎志丹,等. 生态型超高性能混凝土的制备、流动性能与力学行为[J]. 商品混凝土, 2009(4): 29.
16 Az-Rubio F D, Pérez J R, Gálvez V S. The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics[J]. Int J Impact Eng, 2002,27(2):161.
17 Klepaczko J R, Brara A. An experimental method for dynamic tensile testing of concrete by spalling[J]. Int J Impact Eng, 2001,25(4):387.
18 Guo X. Stress wave propagation in concrete structure under impact loading[D].Changsha: National University of Defense Technology,2010(in Chinese).
郭弦. 冲击作用下混凝土中应力波传播规律研究[D]. 长沙:国防科学技术大学, 2010.
19 Tian H W, Guo W G.Validity analysis of sample strain measurement in dynamic tensile experiment[J]. J Experimental Mechan, 2008,23(5): 403(in Chinese).
田宏伟,郭伟国. 动态拉伸试验中试样应变测试的有效性分析[J]. 实验力学, 2008,23(5): 403.
20 Cao R K. Study on mix proportion design of ultra-high performance concrete based on CPM model and specific strength[D]. Changsha:Hunan University,2008(in Chinese).
曹荣奎. 基于CPM模型和比强度法的超高性能混凝土配合比设计研究[D]. 长沙:湖南大学, 2008.
21 Zhang Lei. The study on the spall strength of concrete[D]. Hefei: Unversity of Science and Technology of China,2006(in Chinese).
张磊. 混凝土层裂强度的研究[D]. 合肥:中国科学技术大学, 2006.
22 Sun Q L, Wang L M. Uniaxial tensile test method for steel fibre concrete[J]. Shanxi Architecture, 2009,35(25): 1(in Chinese).
孙启林,王利民. 钢纤维混凝土单轴拉伸实验方法[J]. 山西建筑, 2009,35(25): 1.
23 Chen B S, Xiao Y, Huang Z Y, et al. Experimental study on the spalling strength of fiber reactive powder concrete[J]. J Hunan University(Natural Sciences), 2009, 36(7): 12(in Chinese).
陈柏生,肖岩,黄政宇,等. 钢纤维活性粉末混凝土动态层裂强度试验研究[J]. 湖南大学学报(自然科学版), 2009, 36(7): 12.
24 黄承义,王春菱. 横向惯性在准脆性材料动态响应中的影响[C]∥第十三届全国物理力学学术会议. 湘潭, 2014.
25 Ren X T, Zhou T Q, Zhong F P, et al. Expermental study for the dynamic mechanical behavior of granite[J]. J Experimental Mechan, 2010,25(6): 723(in Chinese).
任兴涛,周听清,钟方平,等. 花岗岩动态力学性能的实验研究[J]. 实验力学, 2010,25(6): 723.
[1] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[2] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[3] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[4] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[5] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[6] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[7] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[8] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[9] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[10] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[11] 杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
[12] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[13] 张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
[14] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[15] 张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed