Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 109-114    https://doi.org/10.11896/j.issn.1005-023X.2017.023.015
  专题栏目:超高性能混凝土及其工程应用 |
粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*
张丽辉1, 刘加平2, 周华新1, 刘建忠1, 张倩倩1, 韩方玉1
1 江苏苏博特新材料股份有限公司,南京 211103;
2 东南大学材料科学与工程学院,南京 211189
Effects of Coarse Aggregate and Steel Fiber on Uniaxial Tensile Property of Ultra-high Performance Concrete
ZHANG Lihui1, LIU Jiaping2, ZHOU Huaxin1, LIU Jianzhong1, ZHANG Qianqian1, HAN Fangyu1
1 Jiangsu Sobute New Materials Co. Ltd., Nanjing 211103;
2 School of Material Science and Engineering,Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 2568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高含粗骨料超高性能混凝土(Ultra-high performance concrete, UHPC)的单轴拉伸性能,采用单轴拉伸试验和图像分析技术分别研究了粗骨料掺量、颗粒粒径对含粗骨料UHPC单轴拉伸性能和钢纤维在UHPC体系中分散性能的影响规律。结果表明,随着粗骨料掺量及颗粒粒径的增大,钢纤维在UHPC体系中的分散系数和取向系数显著降低,含粗骨料UHPC的单轴拉伸初裂强度、裂后强度和耗能也随之减小。根据粗骨料颗粒最大粒径与钢纤维体积分数、直径间的匹配关系式(Dmax=3df/(Vf)0.5),采用纤维混杂可以充分发挥多尺度纤维与具有不同粒径分布的骨料间的分级匹配关系;粗骨料体积分数和颗粒最大粒径分别为10%和10 mm时,采用平直钢纤维(直径0.12 mm、长度10 mm、体积掺量1.2%)和端钩钢纤维(直径0.35 mm、长度20 mm、体积掺量1.8%)混杂实现了含粗骨料UHPC的单轴拉伸性能的提升,其裂后强度和耗能分别为8.69 MPa和11.10 J。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张丽辉
刘加平
周华新
刘建忠
张倩倩
韩方玉
关键词:  粗骨料  颗粒最大粒径  钢纤维  超高性能混凝土  单轴拉伸性能    
Abstract: In order to improve the uniaxial tensile property of ultra-high performance concrete (UHPC) with coarse aggregate, uniaxial tensile test and image analysis were employed to investigate the effects of dosage, maximum particle size of coarse aggregate on the tensile property of UHPC and steel fiber dispersion in the UHPC system, respectively. The experimental results showed that with the increase of dosage and particle size of coarse aggregate, the distribution coefficient and orientation coefficient of steel fiber in the UHPC systems were significantly decreased, resulting in the declines of tensile first cracking strength, post-cracking strength and energy absorption capacity of UHPC with coarse aggregate. Based on the matching relationship between maximum particle size of coarse aggregate and volume fraction and diameter of steel fiber (Dmax=3df/(Vf)0.5), the introduction of hybrid steel fibers can make full use of the hierarchical matching relationship between the multi-scale steel fibers and aggregates with different particle size distribution. The uniaxial tensile property of UHPC with coarse aggregate could be improved by the hybridization of straight steel fiber with 0.12 mm diameter, 10 mm length and 1.2% volume fraction and hooked-end steel fiber with 0.35 mm diameter, 20 mm length and 1.8% volume fraction when the volume fraction and maximum particle size of coarse aggregate were 10% and 10 mm, respectively. And the UHPC's tensile post-cracking strength and energy absorption capacity were 8.69 MPa and 11.10 J, respectively.
Key words:  coarse aggregate    maximum particle size    steel fiber    ultra-high performance concrete    uniaxial tensile property
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家自然科学基金(51438003); 江苏省土木工程材料重点实验室开放基金(CM2015-06); 江苏省科技计划青年基金(BK20141012)
通讯作者:  刘加平:男,1967年生,博士,教授,博士研究生导师,研究方向为超高性能水泥基材料 E-mail:liujiaping@cnjsjk.cn   
作者简介:  张丽辉:女,1989年生,硕士,工程师,研究方向为超高性能混凝土韧性提升技术 E-mail:zhanglihui@cnjsjk.cn
引用本文:    
张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
ZHANG Lihui, LIU Jiaping, ZHOU Huaxin, LIU Jianzhong, ZHANG Qianqian, HAN Fangyu. Effects of Coarse Aggregate and Steel Fiber on Uniaxial Tensile Property of Ultra-high Performance Concrete. Materials Reports, 2017, 31(23): 109-114.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.015  或          https://www.mater-rep.com/CN/Y2017/V31/I23/109
1 Chen B C, Ji T, Huang Q W, et al. Review of research on ultra-high performance concrete[J]. J Architecture Civil Eng, 2014, 31(3):1(in Chinese).
陈宝春,季韬,黄卿维,等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报,2014,31(3):1.
2 Yoo D Y, Yoon Y S. A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete[J]. Int J Concr Struct Mater, 2016, 10(2): 1.
3 Perry V H, Seibert P J. The use of UHPFRC (Ductal??) for bridges in North America: The technology, applications and challenges facing commercialization[C]∥Proceedings of Second International Symposium on Ultra High Performance Concrete. Kassel, 2008.
4 Schmidt M, Fehling E. Ultra-high-performance concrete: Research, development and application in Europe[J]. ACI Special publication, 2005, 228: 51.
5 Zhang Y S, Sun W, Liu S F, et al. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors[J]. Cem Concr Compos, 2008, 30(9): 831.
6 Yang S L, Millard S G, Soutsosmn, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Constr Build Mater, 2009, 23(6): 2291.
7 Wille K, Naaman A E, Ei-tawil S, et al. Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ducti-lity without heat curing[J]. Mater Struct, 2012, 45(3): 309.
8 Zhao S J, Fan J J, Sun W. Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete[J]. Constr Build Mater, 2014, 50(2): 540.
9 Karmout M. Mechanical properties of ultra high performance concrete produced in gaza strip[D]. Iran: The Islamic University of Gaza, 2009.
10 Wang C, Yang C H, Liu F, et al. Preparation of ultra-high performance concrete with common technology and materials[J]. Cem Concr Compos, 2012, 34(4): 538.
11 Peng G F, Yang J, Gao Y X, et al. Factors influencing compressive strength of ultra-high-performance concrete with coarse aggregate [J]. J North China University of Water Resources and Electric Power, 2012, 33(6): 5(in Chinese).
朋改非,杨娟,高育欣,等.含粗骨料的超高性能混凝土抗压强度的影响因素[J].华北水利水电学院学报,2012,33(6):5.
12 Liu J Z, Han F Y, Cui G, et al. Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete [J]. Constr Build Mater, 2016, 121: 310.
13 Park S H, Kim D J, Ryu G S, et al. Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J]. Cem Concr Compos, 2012, 34(2): 172.
14 Hannawi K, Bian H, Prince-agbodjan W, et al. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes[J]. Compos Part B Eng, 2016, 86: 214.
15 Wille K, Kim D J, Naaman A E. Strain-hardening UHP-FRC with low fiber contents[J]. Mater Struct, 2011, 44(3): 583.
16 Kang S T, Kim J K. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cem Concr Res, 2011, 41(10): 1001.
17 Huang X Y, Ranade R, Li V C, et al. Development of green engineered cementitious composites using iron ore tailings as aggregates [J]. Constr Build Mater, 2013, 44(44): 757.
18 Liu J P, Li C F, Liu J Z, et al. Characterization of fiber distribution in steel fiber reinforced cementitious composites with low water-binder ratio[J]. Indian J Eng Mater Sci, 2011, 18(6): 449.
19 Liu J Z, Zhang L H, Li C F, et al. Dispersive characterization and control of fiber in polyvinyl alcohol fiber cement composites[J]. J Chin Ceram Soc, 2015, 43(8): 1061(in Chinese).
刘建忠, 张丽辉, 李长风, 等. 聚乙烯醇纤维在水泥基复合材料中的分散性表征及调控[J]. 硅酸盐学报, 2015, 43(8): 1061.
20 Nguyen D L, Ryu G S, Koh K T, et al. Size and geometry depen-dent tensile behavior of ultra-high-performance fiber-reinforced concrete[J]. Compos Part B Eng, 2014, 58: 279.
21 Li C F, Liu J Z, Zhou H X, et al. Tensile constitutive model of fiber reinforced cementitious composites [J]. J Hebei University Technology, 2014, 43(6): 35(in Chinese).
李长风,刘建忠,周华新, 等.纤维增强水泥基复合材料的拉伸本构关系模型[J].河北工业大学学报, 2014, 43(6): 35.
22 Ma J, Yang X Y. Selection of maximum particle size of coarse aggregate in steel fiber reinforced concrete[J]. Low Temperature Architecture Technol, 1997(2): 37(in Chinese).
马军, 杨向宁. 钢纤维混凝土粗骨料最大粒径的选择[J]. 低温建筑技术, 1997(2): 37.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[4] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[5] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[6] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[7] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[8] 张雪芹, 马昆林, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2024, 38(2): 22060263-12.
[9] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[10] 李长志, 周新斌, 魏世恭, 马昆林, 于连山, 邹卫东. 粗骨料形态特征差异及其与堆积空隙率关系的研究[J]. 材料导报, 2024, 38(17): 23030064-9.
[11] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[12] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[13] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[14] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[15] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed