Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 115-119    https://doi.org/10.11896/j.issn.1005-023X.2017.023.016
  专题栏目:超高性能混凝土及其工程应用 |
含粗骨料超高性能混凝土力学性能研究及机理分析*
程俊1, 刘加平1, 刘建忠2, 张倩倩2, 张丽辉2, 林玮2, 韩方玉2
1 东南大学材料科学与工程学院,南京211189;
2 江苏苏博特新材料股份有限公司,南京210008
An Experimental Study and a Mechanism Analysis on Mechanical Properties of Ultra-high Performance Concrete with Coarse Aggregate
CHENG Jun1, LIU Jiaping1, LIU Jianzhong2, ZHANG Qianqian2, ZHANG Lihui2, LIN Wei2, HAN Fangyu2
1 School of Materials Science and Engineering,Southeast University,Nanjing 211189;
2 Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008
下载:  全 文 ( PDF ) ( 997KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探索含粗骨料超高性能混凝土的各项力学性能,研究了粗骨料体积掺量(0 kg/m3、280 kg/m3、400 kg/m3、480 kg/m3、560 kg/m3)、纤维掺量(2%、2.5%)以及纤维形态(平直型、端钩型)对超高性能混凝土抗压强度、弹性模量以及四点弯曲强度的影响,并引入纤维取向系数和纤维有效长度,探索粗骨料掺量对弯曲强度影响的微观机理。结果表明,粗骨料体积掺量对含粗骨料超高性能混凝土抗压强度的影响不大(0.4%~4.5%);对弹性模量的提高效果显著,最高可提高7.8%;对抗弯强度具有不利影响,并且随着粗骨料掺量增大,纤维取向系数下降,纤维有效长度减小,负面影响扩大。当粗骨料体积掺量为560 kg/m3时,弯曲强度下降了21.2%。增加纤维掺量或者掺入端钩型纤维可提高弯曲强度,掺入端钩型钢纤维可显著增大纤维有效长度,从而大幅度提高弯曲强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程俊
刘加平
刘建忠
张倩倩
张丽辉
林玮
韩方玉
关键词:  粗骨料  钢纤维  超高性能混凝土  力学性能  取向系数  纤维有效长度    
Abstract: In order to explore the mechanical properties of ultra-high performance concrete (UHPC) with coarse aggregate, the effects of coarse aggregate volume contents (0 kg/m3, 280 kg/m3, 400 kg/m3, 480 kg/m3, 560 kg/m3), fiber contents (2%, 2.5%) and fiber shape (flat type, hooked-end type) on compressive strength, elastic modulus and flexural strength of UHPC have been studied in the present work. Fiber orientation coefficient and effective length of fiber were introduced to explore microscopic mechanism for the influence of coarse aggregate content on flexural strength. The results demonstrated that coarse aggregate volume content affects little on the compressive strength (0.4%—4.5%); applies significant enhancement on the elastic modulus (maximum increment 7.8%); causes negative effect to flexural strength whose decrement will be fostered due to the declined orientation coefficient and effective length induced by coarse aggregate. Increasing fiber content or adding hooked-end fiber will benefit the flexural strength, in which hooked-end fiber reinforcement has greater effect in this experiment because of the substantial increment of fiber effective length.
Key words:  coarse aggregate    steel fiber    ultra-high performance concrete    mechanical properties    orientation coefficient    fiber effective length
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528.572  
基金资助: *国家自然科学基金重点基金(51578268)
通讯作者:  刘加平:男,博士,教授,博士研究生导师,研究方向为超高性能水泥基材料,高性能混凝土外加剂,裂缝控制以及服役寿命保障与提升 E-mail:ljp@cnjsjk.cn   
作者简介:  程俊:男,1992年生,硕士研究生,研究方向为超高性能混凝土 E-mail:1522909629@qq.com
引用本文:    
程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
CHENG Jun, LIU Jiaping, LIU Jianzhong, ZHANG Qianqian, ZHANG Lihui, LIN Wei, HAN Fangyu. An Experimental Study and a Mechanism Analysis on Mechanical Properties of Ultra-high Performance Concrete with Coarse Aggregate. Materials Reports, 2017, 31(23): 115-119.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.016  或          https://www.mater-rep.com/CN/Y2017/V31/I23/115
1 朋改非,滕岩,黄艳竹,等. 含粗骨料的超高性能混凝土抗火性研究综述[C]∥第三届两岸四地高性能混凝土国际研讨会论文集. 中国建材工业,2012: 330.
2 Huang Xiaoyan, Ranade Ravi, Ni Wen, et al. Development of green engineered cementitious composites using iron ore tailings as aggregates[J]. Constr Build Mater, 2013,44:757.
3 Cheng Jun, Liu Jiaping, Zhang Lihui. Uniaxial tension properties and mechanism analysis of ultra-high performance concrete containing coarse aggregate[J]. China Concr Cem Products, 2015,12(12):1(in Chinese).程俊,刘加平,张丽辉. 含粗骨料超高性能混凝土单轴拉伸性能及机理分析[J]. 混凝土与水泥制品, 2015,12(12):1.
4 Ma Jun, Yang Xiangning, Li Qiuyi. Selection of maximum particle size of coarse aggregate of steel fiber reinforced concrete[J]. Low Temperature Architecture Technol, 1997(2):37(in Chinese).
马军,杨向宁,李秋义. 钢纤维混凝土粗骨料最大粒径的选择[J]. 低温建筑技术, 1997(2):37.
5 Liu Jianzhong, Han Fangyu, Cui Gong, et al. Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high perfor-mance concrete[J]. Constr Build Mater, 2016,121:310.
6 Chen Huisu, Sun Wei. Interfacial transition zone between aggregate and paste in cementtitious composites(I): Experimental techniques[J]. J Chin Ceram Soc, 2004(1): 70(in Chinese).
陈惠苏,孙伟. 水泥基复合材料集料与浆体界面研究综述(一):实验技术[J]. 硅酸盐学报, 2004(1): 70.
7 中华人民共和国国家质量监督检验检疫总局. GB/T 31387-2015 活性粉末混凝土[S]. 北京:中国标准出版社,2015.
8 Lee Y H, Lee S W, Youn J R, et al. Characterization of fiber orientation in short fiber reinforced composites with an image processing technique[J]. Mater Res Innovations, 2002,6(2): 65.
9 Zak G, Park C B, Benhabib B. Estimation of three-dimensional fibre-orientation distribution in short-fibre composites by a two-section method[J]. J Compos Mater, 2001, 35(4): 316.
10 Zhang Xiaohui. Study on the bending fatigue and damage properties and micro-strength of steel fiber reinforced concrete[D]. Kunming: Kunming University of Science and Technology, 2001(in Chinese).
张小辉. 钢纤维混凝土弯曲疲劳及其损伤特性和细观强度研究[D]. 昆明:昆明理工大学,2001.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed