Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22060263-12    https://doi.org/10.11896/cldb.22060263
  无机非金属及其复合材料 |
粗骨料形态特征表征参数及其与混凝土性能关系的研究进展
张雪芹, 马昆林*, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举
中南大学土木工程学院,长沙 410075
Research Progress in Characterization Parameters of Coarse Aggregate Morphology and Its Relationship with Concrete Properties
ZHANG Xueqin, MA Kunlin*, LONG Guangcheng, ZENG Xiaohui, TANG Zhuo, XIE Youjun, LIU Baoju
School of Civil Engineering, Central South University, Changsha 410075, China
下载:  全 文 ( PDF ) ( 23893KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粗骨料在混凝土中起骨架作用,是制备混凝土的重要原材料。粗骨料的形态特征直接影响混凝土中骨料间的堆积状态、排列方式、接触形式以及粗骨料与水泥砂浆的粘结性能,从而对混凝土的工作性能、力学性能和耐久性能造成显著影响。近年来,随着天然砂石资源逐渐稀缺,再生粗骨料和珊瑚粗骨料等绿色环保骨料逐渐用于混凝土中,但不同种类粗骨料之间的形态特征往往差异较大。因此建立粗骨料的形态特征表征体系以及明确其与混凝土性能之间的关系,有助于实现粗骨料的高品质利用以及混凝土配合比的优化及性能提升。本文基于粗骨料的形状、棱角和表面质地等形态特征,系统总结了粗骨料形态特征的表征参数及参数测量方法,对目前所采用的粗骨料形态特征的数值分析、重构方法及其适用范围进行了分析,最后讨论了粗骨料形态特征参数与混凝土性能之间的定量关系,并基于以上分析,提出了需要进一步研究的内容。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雪芹
马昆林
龙广成
曾晓辉
唐卓
谢友均
刘宝举
关键词:  粗骨料  形态特征  表征参数  混凝土    
Abstract: Coarse aggregate is an important raw material in concrete and plays the role of skeleton of concrete. The morphological characteristics of coarse aggregate directly influence the stacking state, arrangement mode, contact form between aggregates in concrete and the bonding performance between coarse aggregate and cement mortar, significantly affecting the workability, mechanical properties and durability of concrete. In recent years, with the gradual scarcity of natural sand and stone resources, green aggregates such as recycled coarse aggregate and coral coarse aggregate are also gradually used in concrete, but the morphological characteristics of different types of coarse aggregate are often quite different. Therefore, the establishment of a characterization system for the morphological characteristics of coarse aggregate and a clear understanding of its relationship with concrete performance will help to achieve high-quality utilization of coarse aggregate, optimization of concrete mix proportion and performance improvement. Based on the morphological characteristics of coarse aggregate such as shape, edge and surface texture, this paper systematically summarizes the characterization parameters and parameter measurement methods of the morphological characteristics of coarse aggregate. The numerical analysis, reconstruction methods, and application scope of coarse aggregate morphological characteristics were examined. Furthermore, the quantitative relationship between the morphological characteristics of coarse aggregate and the performance of concrete was expounded. Finally, based on the above analysis, further research was put forward.
Key words:  coarse aggregate    morphological characteristic    characterization parameter    concrete
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528.041  
基金资助: 中国中铁股份有限公司科技项目(2021-重点-08);国家自然科学基金(52208300);湖南省自然科学基金(2022JJ30732);长沙市自然科学基金(KP2202098)
通讯作者:  *马昆林,中南大学土木工程学院教授。主要从事海绵城市、路面结构设计及损伤理论、固废资源化利用、高性能混凝土技术及高速铁路无砟轨道方面的研究和工程应用。发表学术论文100余篇,获省部级以上科研奖励6项,获专利授权10项,主编教材3部,出版专著1部,作为主要起草人编制规范4部。makunlin@csu.edu.cn   
作者简介:  张雪芹,2021 年毕业于东北林业大学,获得工学学士学位。现为中南大学土木工程学院硕士研究生,在马昆林教授与谢友均教授的指导下进行研究,目前主要研究领域为骨料形态。
引用本文:    
张雪芹, 马昆林, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2024, 38(2): 22060263-12.
ZHANG Xueqin, MA Kunlin, LONG Guangcheng, ZENG Xiaohui, TANG Zhuo, XIE Youjun, LIU Baoju. Research Progress in Characterization Parameters of Coarse Aggregate Morphology and Its Relationship with Concrete Properties. Materials Reports, 2024, 38(2): 22060263-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060263  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22060263
1 Bian J W, Zhang W B, Shen Z Z, et al. Science and Engineering of Composite Materials, 2021, 28(1), 516.
2 He H, Guo Z Q, Stroeven P, et al. Materials Characterization, 2009, 60(10), 1082.
3 Lyu B C, Wang A G, Zhang Z H, et al. Cement and Concrete Compo-sites, 2019, 100, 25.
4 Ma K L, Huang X Y, Shen J T, et al. Journal of Building Engineering, 2021, 44, 103292.
5 Zhu H J. Research on measurement method and experimental comparison of coarse aggregate angularity and surface texture. Master’s Thesis, Huaqiao University, China, 2020 (in Chinese).
朱合军. 粗骨料棱角性、表面纹理测量方法及实验对比研究. 硕士学位论文, 华侨大学, 2020.
6 Barrett P J. Sedimentology, 1980, 27(3), 291.
7 Su D, Wu J, Xiao Z J, et al. Journal of Shenyang Jianzhu University Natural Science, 2020, 36(5), 827 (in Chinese).
苏栋, 吴炯, 肖政健, 等. 沈阳建筑大学学报(自然科学版), 2020, 36(5), 827.
8 Baudouin-M A, Hwang S D, Khayat K H. Materials and Structures, 2016, 49(1-2), 597.
9 Zhao Y, Duan Y H, Zhu L L, et al. Construction and Building Materials, 2021, 286, 122940.
10 Ge H T, Sha A M, Han Z Q, et al. Construction and Building Materials, 2018, 188, 58.
11 Lara D, Maia R, Bessa I, et al. Construction and Building Materials, 2021, 284, 122745.
12 Tan L, Cong L, Wang T J, et al. Journal of Building Materials, 2019, 22(2), 314(in Chinese).
谭乐, 丛林, 王统井, 等. 建筑材料学报, 2019, 22(2), 314.
13 Wang H M, Yang M, Fu D X, et al. Technology of Highway and Transport, 2012(6), 1(in Chinese).
王火明, 杨敏, 符德省, 等. 公路交通技术, 2012 (6), 1.
14 Hafeez I, Juniad F, Kamal M A, et al. Journal of Materials in Civil Engineering, 2016, 28(4), 4015180.
15 Rajan B, Singh D. Journal of Materials in Civil Engineering, 2017, 29(7), 4017044.
16 Zhang S S, Pei J Z, Li R, et al. Materials, 2020, 13(2), 492.
17 Li Q Y, Li Y X, Zhu C J. Materials Science and Technology, 2005 (6), 579 (in Chinese).
李秋义, 李云霞, 朱崇绩. 材料科学与工艺, 2005 (6), 579.
18 Liu Z Q, Yang Y S, Liu Q Q, et al. China Journal of Highway and Transport, 2010, 23(4), 8 (in Chinese).
刘振清, 杨永顺, 刘清泉, 等. 中国公路学报, 2010, 23(4), 8.
19 Krumbein W C. Journal of Sedimentary Research, 1941, 11(2), 64.
20 Prowell B, Weingart R. Transportation Research Record Journal of the Transportation Research Board, 1999, 1673, 73.
21 Pan T Y. Investigation of coarse aggregate morphology affecting hot mix behavior using image analysis. Ph. D. Thesis, University of Illinois at Urbana-Champaign, USA, 2006.
22 Victor M, Iuri S B, Verônica T B. Construction and Building Materials, 2015, 98, 476.
23 Garboczi E J. Cement and Concrete Research, 2002, 32(10), 1621.
24 Liu Y F, Sun W J, Harikrishnan N, et al. Construction and Building Materials, 2016, 124, 645.
25 Lanaro F, Tolppanen P. Engineering Geology, 2002, 65(1), 17.
26 Wang H N, Hao P W, Xiao Q Y, et al. Journal of Southeast University(Natural Science Edition), 2008(4), 637(in Chinese).
汪海年, 郝培文, 肖庆一, 等. 东南大学学报(自然科学版), 2008(4), 637.
27 Wang M Y. Research on recognition of aggregate shape features based on convolutional neural network. Master’s Thesis, Chang’an University, China, 2020 (in Chinese).
王蒙阳. 基于卷积神经网络的集料外形特征识别研究. 硕士学位论文, 长安大学, 2020.
28 Yan R, Liao J D, Wu X Y, et al. Laser & Optoelectronics Progress, 2021, 58(20), 211 (in Chinese).
鄢然, 廖记登, 吴小勇, 等. 激光与光电子学进展, 2021, 58(20), 211.
29 Wadell H. The Journal of Geology, 1935, 43(3), 250.
30 Li J J, Zhang Q, Chen Z D. Journal of Shenyang Jianzhu University Na-tural Science, 2017, 33(6), 1055 (in Chinese).
李晶晶, 张擎, 陈忠达. 沈阳建筑大学学报(自然科学版), 2017, 33(6), 1055.
31 Xiao B L, Yang Z Q, Chen D X, et al. Journal of Tianjin University, Science and Technology, 2019, 52(5), 545(in Chinese).
肖柏林, 杨志强, 陈得信, 等. 天津大学学报(自然科学与工程技术版), 2019, 52(5), 545.
32 Emin K, Ozturk H I, Abbas A R, et al. The International Journal of Pavement Engineering, 2011, 12(4), 421.
33 Wang H N, Hao P W. Journal of Building Materials, 2009, 12(6), 747(in Chinese).
汪海年, 郝培文. 建筑材料学报, 2009, 12(6), 747.
34 Yuan J, Qian Y. Journal of Traffic and Transportation Engineering, 2011, 11(4), 17(in Chinese).
袁峻, 钱野. 交通运输工程学报, 2011, 11(4), 17.
35 Zhang D D. Study on geometric characteristics of asphalt mixture aggregate. Master’s Thesis, Chang’an University, China, 2010 (in Chinese).
张冬冬. 沥青混合料集料几何特性研究. 硕士学位论文, 长安大学, 2010.
36 Wang P S. Research on quantitative method of aggregate morphological features based on three-dimensional solid modeling. Master’s Thesis, Hefei University of Technology, China, 2018 (in Chinese).
汪培松. 基于三维实体建模的集料形态学特征量化方法研究. 硕士学位论文, 合肥工业大学, 2018.
37 Zhu H J, Fang H Y, Cai Y Y, et al. Particuology , 2020, 50, 181.
38 Eyad Masad, Button J W. Computer-aided Civil and Infrastructure Engineering, 2000, 15(4), 273.
39 Zhou C X, Chen G M, Tan Y Q. Journal of Harbin Institute of Technology, 2009, 41(11), 85 (in Chinese).
周纯秀, 陈国明, 谭忆秋. 哈尔滨工业大学学报, 2009, 41(11), 85.
40 Zuzana F, Jambor M. Procedia Engineering, 2017, 192, 195.
41 Xu S H, Xia M. Materials Reports, 2020, 34(16), 16140(in Chinese).
徐善华, 夏敏. 材料导报, 2020, 34(16), 16140.
42 Ren G Z, Jiang T. Computer Applications and Software, 2014, 31(11), 190(in Chinese).
任国贞, 江涛. 计算机应用与软件, 2014, 31(11), 190.
43 Gan X L, Zhang W L, Xie H S, et al. Highway, 2021, 66(10), 321(in Chinese).
甘新立, 张文利, 谢洪胜, 等. 公路, 2021, 66(10), 321.
44 Sun W J, Liu Y F, Lane D S, et al. Construction and Building Mate-rials, 2017, 155, 981.
45 Shi C, Bai J Z, Yu S Y, et al. Rock and Soil Mechanics, 2016, 37(10), 2780(in Chinese).
石崇, 白金州, 于士彦, 等. 岩土力学, 2016, 37(10), 2780.
46 Zhou F G, Bai H, Wang W B, et al. Subgrade Engineering, 2021(6), 25(in Chinese).
周凤岗, 白皓, 王武斌, 等. 路基工程, 2021(6), 25.
47 Shi C, Shen J L. Journal of Shenyang University of Technology, 2017, 39(4), 469 (in Chinese).
石崇, 沈俊良. 沈阳工业大学学报, 2017, 39(4), 469.
48 Wang S Q, Qiao T, Zhang L F, et al. Science China Physics, Mechanics & Astronomy, 2022, 52(2), 42(in Chinese).
王嗣强, 乔婷, 张林风, 等. 中国科学, 物理学 力学 天文学, 2022, 52(2), 42.
49 Fu R, Hu X L, Zhou B, et al. Rock and Soil Mechanics, 2018, 39(2), 483 (in Chinese).
付茹, 胡新丽, 周博, 等. 岩土力学, 2018, 39(2), 483.
50 Wei D H, Hurley R C, Poh L H, et al. Cement and Concrete Research, 2020, 134, 106096.
51 Yan L, Yang C H, Wang C. Concrete, 2011(1), 75(in Chinese).
严琳, 杨长辉, 王冲. 混凝土, 2011(1), 75.
52 Zhao M, Zhang X, Zhang X L, et al. Journal of Tongji University(Natural Science), 2016, 44(3), 395 (in Chinese).
赵明, 张雄, 张晓乐, 等. 同济大学学报(自然科学版), 2016, 44(3), 395.
53 Cai Y X, Liu Q F, Yu L W, et al. Cement and Concrete Composites, 2021, 122, 104153.
54 Kabagire K D, Diederich P, Yahia A, et al. Construction and Building Materials, 2017, 151, 615.
55 Hosseinpoor M, Ouro K, Yahia A. Cement and Concrete Composites, 2021, 121, 104072.
56 Cui W, Yan W S, Song H F, et al. Cement and Concrete Composites, 2020, 109, 103558.
57 Li H, Gu X L, Lin F. Construction and Building Materials, 2014, 65, 338.
58 Zhou X, Xie Y J, Long G C, et al. Construction and Building Materials, 2021, 301, 124101.
59 Seung J L, Lee C H, Shin Moochul, et al. Construction and Building Materials, 2019, 204, 184.
60 Li X X, Xu Y, Chen S H. Construction and Building Materials, 2016, 121, 100.
61 Dehghanpoor A, Wong H S, Buenfeld N R. Computational Materials Science, 2013, 78, 63.
62 Dehghanpoor A, Wong H S, Buenfeld N R. Computational Materials Science, 2014, 87, 54.
63 Liu Q F, Feng G L, Xia J, et al. Composite Structures, 2018, 183, 371.
64 Yu W. Research on in-situ transport mechanism and randomicity of chloride ions in concrete in marine environment. Master’s Thesis, Zhejiang University, China, 2017 (in Chinese).
余蔚. 海洋环境下混凝土中氯离子的原位运输机理与随机性特征研究. 硕士学位论文, 浙江大学, 2017.
65 Pan S T, Li K, Zhang C H, et al. Materials Reports, 2022, 36(10), 89(in Chinese).
潘诗婷, 李凯, 张超慧, 等. 材料导报, 2022, 36(10), 89.
65 Zhou Y, Liu Q F. Materials Reports, 2023, 37(24), 22070243 (in Chinese).
周宇, 刘清风. 材料导报, 2023, 37(24), 22070243.
66 Li L J, Liu Q F. Journal of the Chinese Ceramic Society, 2022, 50(8), 2245(in Chinese).
李林洁, 刘清风. 硅酸盐学报, 2022, 50(8), 2245.
67 Liu Q F. Journal of the Chinese Ceramic Society, 2018, 46(8), 1074 (in Chinese).
刘清风. 硅酸盐学报, 2018, 46(8), 1074.
68 Jiang W Q, Liu Q F. Journal of the Chinese Ceramic Society, 2020, 48(2), 258 (in Chinese).
姜文镪, 刘清风. 硅酸盐学报, 2020, 48(2), 258.
69 Guo Y. Research on meso-scale dynamic constitutive relation of concrete under sulfate attack. Master’s Thesis, Harbin Institute of Technology, China, 2014 (in Chinese).
郭洋. 硫酸盐侵蚀混凝土细观动态本构关系研究. 硕士学位论文, 哈尔滨工业大学, 2014.
70 Jia J G. Mesoscale study on mechanical behaviors and frost resistance of recycled concrete based on RBSM. Master’s Thesis, Zhejiang University, China, 2022 (in Chinese).
贾健国. 基于RBSM的再生混凝土力学及抗冻性能细观模拟研究. 硕士学位论文, 浙江大学, 2022.
71 Luo Q. Microscopic damage evolution and numerical analysis of concrete with freeze-thaw exposure. Ph. D. Thesis, Guangxi University, China, 2022 (in Chinese).
罗祺. 冻融作用下混凝土细观损伤演化规律分析及数值模型构建. 博士学位论文, 广西大学, 2022.
72 Thomas D L, Bary B, Adam E, et al. Computational Materials Science, 2013, 72, 1.
73 Pan Z C, Ruan X, Chen A R. Computers and Concrete, 2015, 15(2), 231.
74 Ren C C, Cha X X, Xiao K X, et al. Journal of Wuhan University of Technology, 2020, 42(1), 23(in Chinese).
任长春, 查晓雄, 肖开喜, 等. 武汉理工大学学报, 2020, 42(1), 23.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[10] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[11] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[12] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[13] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[14] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[15] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed