Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22110088-10    https://doi.org/10.11896/cldb.22110088
  无机非金属及其复合材料 |
海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能
陈爽1,2, 韦丽兰1, 陈红梅2, 关纪文3,*
1 广西科技大学土木建筑工程学院,广西 柳州 545006
2 桂林理工大学土木工程学院,广西 桂林 541004
3 南宁学院土木与建筑工程学院,南宁 530200
Corrosion Resistance of BFRP Bar Reinforced Coral Concrete Column Under Marine Environment
CHEN Shuang1,2, WEI Lilan1, CHEN Hongmei2, GUAN Jiwen3,*
1 College of Civil Engineering and Architecture, Guangxi University of Science and Technology, Liuzhou 545006,Guangxi, China
2 School of Civil Engineering, Guilin University of Technology, Guilin 541004,Guangxi, China
3 College of Civil Engineering and Architecture,Nanning University, Nanning 530200, China
下载:  全 文 ( PDF ) ( 13939KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究海洋环境下玄武岩纤维(Basalt fiber reinforced polymer,BFRP)筋的劣化机理、评估BFRP筋增强珊瑚混凝土柱抗侵蚀性的退化程度,对海水环境下BFRP筋、珊瑚混凝土进行受压性能试验。基于材性试验,对12根BFRP筋增强珊瑚混凝土柱进行轴心受压试验,并采用扫描电子显微镜(SEM)对试件破坏后其内部BFRP筋材进行微观试验,检测分析玄武岩纤维、纤维-树脂界面处的化学成分。结果表明:干湿循环条件对BFRP筋的极限承载力影响强于浸泡环境;珊瑚混凝土轴压柱破坏后,其内部筋材均发生了一定程度的腐蚀劣化,构件的承载性能很大程度取决于内部钢筋的锈蚀程度。最后,基于试验结果,分析不同海水腐蚀类别、不同腐蚀周期对构件内部BFRP筋、珊瑚混凝土微观成分的变化规律,探讨不同因素对构件耐久性能的影响机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈爽
韦丽兰
陈红梅
关纪文
关键词:  海洋环境  BFRP筋  珊瑚混凝土  抗侵蚀性能    
Abstract: To explore the degradation mechanism of basalt fiber reinforced polymer (BFRP) reinforcement in the marine environment and evaluate the degradation degree of the corrosion resistance of coral concrete column with BFRP reinforced, the compression tests of BFRP bars, coral concrete and coral concrete column with BFRP reinforced were carried out in the marine environment. Based on the material tested results, the axially loaded tests were carried out on 12 coral concrete columns with BFRP bar reinforced. A micro test of scanning electron microscope (SEM) was put forward to measuring the internal BFRP reinforcement and coral concrete of failure members, and the chemical elements of basalt fiber and fiber-resin interface were tested and analyzed. The results showed that the ultimate bearing capacity of BFRP reinforcement was weakened more critically of dry and wet circulation conditions than that of soaking environment. The marine environment had little effect on the compressive performance of coral concrete. The bearing performance of axially loaded members greatly depended on the degree of corrosion and deterioration of internal reinforcement in failure specimens. Subsequently, based on the tested results, the change rules of different seawater corrosion categories and corrosion cycles on the internal BFRP reinforcement surface and the micro-component of coral concrete, and the influence mechanism of different factors on the durability of members were discussed and analyzed.
Key words:  marine environment    BFRP reinforcement    coral concrete    corrosion resistance
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TU377.9  
基金资助: 国家自然科学基金(51568013);广西自然科学基金(2019GXNSFBA245071); 广西科技基地和人才专项(AD19245131);广西科技大学博士基金项目
通讯作者:  * 关纪文,讲师,2021年7月毕业于桂林理工大学,取得(土木工程)工学硕士学位。现就职于南宁学院,从事工程力学、建筑结构等相关专业的科研及教学工作。近五年参与、主持广西科技计划项目、广西中青年教师基础能力提升项目等纵向科研课题三项,目前已发表SCI论文2篇、中文核心论文5篇。主要研究方向为新型复合材料、新型混凝土结构的力学特性及加固改造技术。354031646@qq.com   
引用本文:    
陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
CHEN Shuang, WEI Lilan, CHEN Hongmei, GUAN Jiwen. Corrosion Resistance of BFRP Bar Reinforced Coral Concrete Column Under Marine Environment. Materials Reports, 2024, 38(9): 22110088-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110088  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22110088
1 Cai Xinguang, Zhao Qing, Chen Huisu.Journal of the Chinese Ceramic Society, 2021, 49(8), 1753(in Chinese).
蔡新光, 赵青, 陈惠苏. 硅酸盐学报, 2021, 49(8), 1753.
2 Elgabbas F, Vincent P, Ahmed E A, et al.Composites Part B: Enginee-ring, 2016, 91(15), 205.
3 Chen Shuang, Liang Shujia, Guan Jiwen. Acta Materiae Compositae Sinica, 2021, 38(10), 3519 (in Chinese).
陈爽, 梁淑嘉, 关纪文. 复合材料学报, 2021, 38(10), 3519.
4 Liu Xia, Liu Feng, She Yinpeng. Acta Materiae Compositae Sinica, 2020, 37(10), 2428(in Chinese).
刘霞, 刘峰, 佘殷鹏. 复合材料学报, 2020, 37(10), 2428.
5 Wu G, Dong Z Q, Wang X, et al. Journal of Composites for Construction, 2015, 19(3), 1.
6 Ahmed A, Guo S, Zhang Z, et al. Construction and Building Materials, 2020, 256(30), 119484.
7 Al Rifai M, El-Hassan H, El-Maaddawy T, et al. Construction and Building Materials, 2020, 243(20), 118258.
8 Serbescu A, Guadagnini M, Pilakoutas K. Journal of Composites for Construction, DOI:10.1061/(ASCE)CC.1943-5614.0000497.
9 Gong Yongzhi, Zhang Jiwen, Jiang Lizhong, et al. Industrial Construction, 2010, 40(7), 67(in Chinese).
龚永智, 张继文, 蒋丽忠,等. 工业建筑,2010, 40(7), 67.
10 Ge Wenjie, Zhang Jiwen, Dai Hang,et al. Journal of Southeast University(Natural Science Edition),2012, 42(1), 114(in Chinese).
葛文杰, 张继文, 戴航,等. 东南大学学报(自然科学版), 2012, 42(1), 114.
11 Da bo, Yu Hongfa, Ma Haiyan,et al. Journal of the Chinese Ceramic Society, 2016, 44(2), 253(in Chinese).
达波, 余红发, 麻海燕,等. 硅酸盐学报, 2016, 44(2), 253.
12 Xu Ke, Lu Chunhua, Xuan Guangyu, et al.Acta Materiae Compositae Sinica, 2020, 37(9), 2348(in Chinese).
徐可, 陆春华, 宣广宇,等. 复合材料学报, 2020, 37(9), 2348.
13 Yang Chao, Yang Shutong, Qi Dehai.Engineering Mechanics, 2018, 35(S1), 172(in Chinese).
杨超, 杨树桐, 戚德海. 工程力学, 2018, 35(S1), 172.
14 Wang Lei, Mao Yadong, Chen Shuang,et al. Journal of Building Mate-rials, 2018,21(2), 286(in Chinese).
王磊, 毛亚东, 陈爽,等. 建筑材料学报, 2018,21(2), 286.
15 Wang H, Belarbi A. Construction and Building Materials, 2013, 44,541.
16 Park Y, Kim Y H, Lee S H.Polymers, 2014, 6(6), 1773.
17 Cao Qingyu, Zhuang Hui, Hao Tianyu,et al. Concrete, 2019(7), 41 (in Chinese).
曹擎宇, 庄慧, 郝挺宇,等. 混凝土, 2019 (7), 41.
18 Xu Feng, Xu Lihua, Ding Jian. China Civil Engineering Journal, 2014, 47(6), 43 (in Chinese).
许峰,徐礼华,丁健. 土木工程学报, 2014, 47(6), 43.
19 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for lightweight aggregate concrete: JGJ 51-2002, China Architecture & Building Press, China, 2002 (in Chinese).
中华人民共和国建设部.轻骨料混凝土技术规程:JGJ51-2002, 中国建筑工业出版社, 2002.
20 Ministry of Housing and Urban-Rural Development of the People's Republic of China.Standard methods for testing of concrete structures: GB/T 50152-2012, China Architecture & Building Press, China, 2012 (in Chinese).
中华人民共和国住房和城乡建设部.混凝土结构试验方法标准:GB/T 50152-2012, 中国建筑工业出版社, 2012.
21 ASTM.Standard practice for the preparation of substitute. ocean water: ASTM D1141-98, West Conshohocken: American Society for Testing and Materials, 2013.
22 Ministry of Housing and Urban-Rural Development of the People's Republic of China.General rules for performance test methods for fiber-reinforced plastics:GB/T1446-2005, China Architecture & Building Press, China, 2012(in Chinese).
中华人民共和国住房和城乡建设部.纤维增强塑料性能试验方法总则:GB/T1446-2005, 中国建筑工业出版社, 2005.
23 Wang Z, Zhao X L, Xian G, et al.Construction and Building Materials, 2017, 139(15), 467.
24 Lu Z, Su L, Xian G, et al. Composite Structures, 2020,234(15), 111650.
25 Lu Chunhua, Liu Ronggui, Cui Zhaowei,et al. China Civil Engineering Journal, 2014, 47(12), 82(in Chinese).
陆春华, 刘荣桂, 崔钊玮,等. 土木工程学报, 2014, 47(12), 82.
26 Jin Weiliang, Jin Libing, Yan Yongdong, et al. Journal of Hydraulic Engineering, 2009, 40 (3), 364(in Chinese).
金伟良, 金立兵, 延永东,等. 水利学报, 2009, 40 (3), 364.
27 Yin Shiping, Li Yao, Li Hedong, et al. China Journal of Highway and Transport, 2017, 30(6), 230(in Chinese).
尹世平, 李耀, 李贺东,等. 中国公路学报,2017, 30(6), 230.
28 Chen Shuang,Guan Jiwen, Liang Shujia.Proceedings of the Institution of Civil Engineers-Structures and Buildings,2023,35(1),1.
[1] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[2] 陈宗平, 黎盛欣, 周济, 戴上秦. 海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算[J]. 材料导报, 2023, 37(20): 22040207-10.
[3] 陈阳, 胡翔, 吴泽媚, 史才军. 海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述[J]. 材料导报, 2023, 37(18): 21120052-11.
[4] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed