Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23120264-8    https://doi.org/10.11896/cldb.23120264
  无机非金属及其复合材料 |
废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究
张凯帆1, 王晓军1,*, 王长龙2,3,*, 胡凯建1, 白云翼2, 陈辰4, 付兴帅2
1 江西理工大学资源与环境工程学院,江西 赣州 341000
2 河北工程大学土木工程学院河北省建筑工程低碳建造与韧性提升重点实验室,河北 邯郸 056038
3 武汉科技大学国家环境保护矿冶资源利用与污染控制重点实验室,武汉 430081
4 核工业井巷建设集团有限公司,浙江 湖州 313001
Study on the Preparation of Cemented Paste Backfill from Waste Aerated Concrete Cementitious Materials Combined with Lithium Slag
ZHANG Kaifan1, WANG Xiaojun1,*, WANG Changlong2,3,*, HU Kaijian1, BAI Yunyi2, CHEN Chen4, FU Xingshuai2
1 School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
2 Hebei Province Key Laboratory for Low-Carbon Construction and Resilience Enhancement of Construction Engineering, School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
3 State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
4 Nuclear Industry Shaft Construction Group Co., Ltd., Huzhou 313001, Zhejiang, China
下载:  全 文 ( PDF ) ( 6784KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对工业固体废弃物堆存量大、资源化利用率低的问题,本工作尝试以废弃加气混凝土(WAC)、钢渣、矿渣、脱硫石膏、水泥为复合胶凝材料(CCMs),锂渣为细骨料,制备全尾砂绿色矿井充填料。采用粒度分析、力学性能测试、X射线衍射(XRD)及扫描电镜(SEM)等手段研究了WAC活性、充填料性能及CCMs水化机理。结果表明,粉磨40 min的WAC比表面积达到655 m2/kg,其28 d活性指数为81.43%。当CCMs配合比为m(WAC)∶m(钢渣)∶m(矿渣)∶m(脱硫石膏)∶m(水泥)=20∶15∶38∶7∶20、充填料中m(CCMs)∶m(锂渣)=1∶7、料浆质量浓度为83%、m(NaCl)∶m(CCMs)=0.01,充填料3、28 d抗压强度分别为1.7、3.0 MPa。充填料用CCMs的主要水化产物为C-S-H凝胶、Ca(OH)2、钙矾石(AFt)、Friedel盐。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张凯帆
王晓军
王长龙
胡凯建
白云翼
陈辰
付兴帅
关键词:  废弃加气混凝土(WAC)  复合胶凝材料(CCMs)  锂渣  矿井充填料  水化产物    
Abstract: In order to solve the problems of large stock and low utilization rate of industrial solid wastes, this work made a sound attempt to prepare full-tailing green backfill using waste aerated concrete (WAC), steel slag (SS), slag (S), desulfurization gypsum (DG), cement (C) as composite cementitious materials (CCMs), and lithium slag (LS) as fine aggregates. It investigated the WAC's activity, backfill performance, and CCMs's hydration mechanism by means of particle size analysis, mechanical properties test, XRD, and SEM. The results showed that the WAC grinded for 40 min had a specific surface area of 655 m2/kg and a 28 d activity index of 81.43%. The backfill prepared by using the CCMs with mixing proportion of m(WAC)∶m(SS)∶m(S)∶m(DG)∶m(C)=20∶15∶38∶7∶20 and by adopting a m(CCMs)∶m(LS)=1∶7, the mass concentration of backfill slurry is 83%, and a m(NaCl)∶m(CCMs)=0.01 achieved 3 and 28 d compressive strengths of 1.7 and 3.0 MPa, respectively. It was revealed that the hydration products of the CCMs were mainly C-S-H gel, Ca(OH)2, ettringite (AFt) and Friedel salt.
Key words:  waste aerated concrete (WAC)    composite cementitious materials (CCMs)    lithium slag (LS)    mine backfill    hydration product
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TD853.3  
基金资助: 国家重点研发计划(2021YFC1910605);河北省科技重大专项(21283804Z);固废资源化利用与节能国家重点实验室开放基金(SWR-2023-007);国家环境保护矿冶资源利用与污染控制重点实验室开放基金(HB202306)
通讯作者:  *王晓军,江西理工大学教授,博士研究生导师。2012年1月于北京科技大学获工程力学专业博士学位。主要从事岩石力学、采矿工程等领域的教学与科研工作。wangxiaojun@jxust.edu.cn;王长龙,河北工程大学教授,博士研究生导师。2014年1月于北京科技大学或矿业工程专业博士学位。长期从事固体废弃物高值化利用的理论及关键技术研究。baistuwong@139.com   
作者简介:  张凯帆,江西理工大学博士研究生,2021年6月于河北工程大学获结构工程专业工学硕士学位,从事新型建筑材料、矿物材料及复杂共生矿产资源综合利用研究。
引用本文:    
张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
ZHANG Kaifan, WANG Xiaojun, WANG Changlong, HU Kaijian, BAI Yunyi, CHEN Chen, FU Xingshuai. Study on the Preparation of Cemented Paste Backfill from Waste Aerated Concrete Cementitious Materials Combined with Lithium Slag. Materials Reports, 2025, 39(2): 23120264-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120264  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23120264
1 Zhang Y, Zeng L X, Kang Y, et al. Desalination and Water Treatment, 2017, 82, 170.
2 Li W J, Zeng L X, Kang Y, et al. Desalination and Water Treatment, 2016, 57, 14169.
3 Bao T, Chen T H, Wille M L, et al. Journal of Water Process Enginee-ring, 2016, 9, 188.
4 Kuhn D C, Cabral LL, Pereira I C, et al. Chemical Engineering and Processing-Process Intensification, 2023, 184, 109284.
5 Gyurko Z, Szijarto A, Nemes R. Procedia Engineering, 2017, 193, 11.
6 Bergmans J, Nielsen P, Snellings R, et al. Construction and Building Materials, 2016, 111, 9.
7 Suwan T, Wattanachai P. Advances in Materials Science and Engineering, 2017, 2017, 2394641.
8 Xiao W,Yin J L,Chen J J. New Building Materials, 2021, 48(4), 156 (in Chinese).
肖伟, 尹键丽, 陈建军.新型建筑材料, 2021, 48(4), 156.
9 Ma B G, Gao L, Jian S W, et al. Materials Reports, 2011, 25(8), 111 (in Chinese).
马保国, 高立, 蹇守卫, 等.材料导报, 2011, 25(8), 111.
10 Hu Biao. Preparation of calcium silicate insulation by waste AAC. Ph. D. Thesis, Nanjing University of Science & Technology, China, 2015 (in Chinese).
胡彪. 利用废弃加气混凝土制备硅酸钙绝热材料. 博士学位论文, 南京理工大学, 2015.
11 Guo W M. Investigation on preparation and properties of calcium silicate thermal insulation material by solid waste. Ph. D. thesis, Nanjing University of Science & Technology, China, 2013 (in Chinese).
郭武明. 利用固体废弃物制备硅酸钙绝热材料及性能研究. 博士学位论文, 南京理工大学, 2013.
12 Pan Y, Lang L, Yong L S, et al. Science of the Total Environment, 2023, 880, 163209.
13 Liu H Y, Jin C L, Hong B L, et al. International Journal of Minerals, Metallurgy and Materials, 2023, 30(8), 1430.
14 Brett H, Liang C. International Journal of Minerals, Metallurgy and Materials, 2023, 30(8), 1474.
15 Yong S, Ying L Z, Jing P Q, et al. Environmental Science and Pollution Research, 2022, 29, 73115.
16 Yu Y C. Theory and engineering practice of cemented filling in metal mines, Metallurgical Industry Press, China, 2020, pp. 17 (in Chinese).
于润仓. 金属矿山胶结充填理论与工程实践, 冶金工业出版社, 2020, pp, 17.
17 Jiang H,Fall M,Yilmaz E, et al. Powder Technology, 2020, 372, 258.
18 Xu W B, Li Q L, Liu B. Construction and Building Materials, 2020, 237, 117738.
19 Tuylu S. Journal of Wuhan University of Technology (Materials Science Edition), 2022, 37, 620.
20 Zhang X, Zhang X, Shuai P, et al. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9, 132.
21 Xiao B, Miao S, Gao Q, et al. The Journal of the Minerals, Metals & Materials Society, 2021, 73, 1053.
22 Xi J J, Ji G X, Liao Y L, et al. Journal of Sustainable Metallurgy, 2022, 8(1), 51.
23 Li X. Preparation ofgreen low-carbon composite cementitious materials from multi-source solid waste. Master's Thesis, Hebei University of Engineering, China, 2023 (in Chinese).
李鑫. 多源固废协同制备绿色低碳复合胶凝材料的研究. 硕士学位论文, 河北工程大学, 2023.
24 Pang C M, Tang Z Y, Yang Z Y, eat l. Materials Reports, 2023, 37(9), 80 (in Chinese).
庞超明, 唐志远, 杨志远, 等. 材料导报, 2023, 37(9), 80.
25 Kong X M, Lu Z C, Zhang C Y, et al. Journal of the Chinese Ceramic Society, 2017, 45(2), 274 (in Chinese).
孔祥明, 卢子臣, 张朝阳. 硅酸盐学报, 2017, 45(2), 274.
26 Kanchanason V, Plank J. Construction and Building Materials, 2018, 169, 20.
27 Liu X H, Ma B G, Tan H B, et al. Construction and Building Materials, 2020, 232, 238.
28 Li G X, Zhang J B, Niu M D, et al. Construction and Building Mate-rials, 2020, 233, 117296.
29 Aggoun S, Cheikh-Zouaoui M, Chikh N, et al. Construction and Building Materials, 2008, 22(2), 106.
30 Han J G, Yan P Y. Journal of the Chinese Ceramic Society, 2010, 38(4), 608 (in Chinese).
韩建国, 阎培渝. 硅酸盐学报, 2010, 38(4), 608.
31 Cao Y Z, Guo L P, Xue X L. Journal of Southeast University (Natural Science Edition), 2019, 49(4), 712 (in Chinese).
曹园章, 郭丽萍, 薛晓丽. 东南大学学报(自然科学版), 2019, 49(4), 712.
32 Chang L W, Yang Q, Jian L J, et al. Frontiers in Earth Science, 2023, 11, 1181952.
33 Wang C L, Zhang K F, Zuo W, et al. Materials Reports, 2020, 43(12), 24034 (in Chinese).
王长龙, 张凯帆, 左伟, 等. 材料导报, 2020, 43(12), 24034.
34 Wang Z J, Li J, Ye P F, et al. Journal of New Materials for Electrochemical Systems, 2019, 22(2), 85.
35 Cui X W, Wang C L, Ni W, et al. Romanian Journal of Materials, 2017, 47(1), 46.
36 Li X Y, Wang C L, Zhan J Y, et al. Journal of New Materials for Electrochemical Systems, 2019, 22(4), 224.
37 Wang C L, Ni W, Zhang S Q, et al. Construction and Building Mate-rials, 2016, 104, 109.
38 Liang X Y, Yuan D X, Li J, et al. Romanian Journal of Materials, 2018, 48(3), 381.
39 Yang F H, Liang X Y, Zhu Y, et al. Journal of New Materials for Electrochemical Systems, 2019, 22(3), 159.
40 Brough A R, Holloway M, Sykes J, et al. Cement Concrete Research, 2000, 30(9), 1375.
41 Zhang J, Shi C J, Zhang Z H, et al. Construction Building Materials, 2017, 152, 598.
[1] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[2] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[3] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[4] 李悦, 龙世儒, 王子赓, 王楠. 磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响[J]. 材料导报, 2024, 38(17): 23120159-6.
[5] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[6] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[7] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[8] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[9] 朱倍, 徐迅, 胡海龙, 余波, 朱妍, 甘露. 基于改性剂调控517相改善碱式硫酸镁水泥耐水性能[J]. 材料导报, 2023, 37(19): 22050264-6.
[10] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[11] 王雪, 王恒, 王强. 我国锂渣资源化利用研究进展[J]. 材料导报, 2022, 36(24): 22040195-11.
[12] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
[13] 徐玲琳, 杨肯, 穆帆远, 杨正宏, 薛伶俐. 纤维素醚对硫铝酸盐水泥浆体水组分及水化产物演变的影响[J]. 材料导报, 2022, 36(10): 21010095-6.
[14] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[15] 董必钦, 罗小龙, 田凯歌, 洪舒贤, 王琰帅. 碱激发锂渣人造骨料的制备和性能表征[J]. 材料导报, 2021, 35(15): 15011-15016.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed