Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23120159-6    https://doi.org/10.11896/cldb.23120159
  新型高性能磷酸镁胶凝材料 |
磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响
李悦, 龙世儒, 王子赓*, 王楠
北京工业大学城市建设学部,城市与工程安全减灾教育部重点实验室,工程抗震与结构诊治北京市重点实验室,北京 100124
Effect of Molar Ratio of Phosphate to Magnesium on Properties of Magnesium Phosphate Cement Prepared by Natural Brucite
LI Yue, LONG Shiru, WANG Zigeng*, WANG Nan
Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Key Laboratory of Urban Security and Disaster Engineering, MOE, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 8304KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用无需煅烧的天然水镁石作为镁质原料制备磷酸镁水泥(MPC),主要研究了磷镁物质的量比(P/M)对MPC工作性能、力学性能、物相组成及微观形貌的影响规律。结果表明:随P/M减小,MPC浆体流动度逐渐减小,凝结时间逐渐延长,抗压强度先提高后降低。P/M为1/4时,MPC综合性能较优,此时流动度为110 mm,凝结时间为7 min,1 d和28 d抗压强度分别为20.0 MPa和43.7 MPa。微观试验结果表明,MPC水化产物为MgKPO4·6H2O、Ca10(OH)2(PO4)2。MPC水化28 d后,水镁石未完全反应。随着P/M减小,硬化体结构密实度增加,总孔隙率减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李悦
龙世儒
王子赓
王楠
关键词:  水镁石  磷酸镁水泥  P/M  宏观性能  水化产物    
Abstract: In this work, magnesium phosphate cement (MPC) was prepared by natural brucite without calcination. The influence of molar ratio of phosphate to magnesium (P/M) on the workability, mechanical properties, phase compositions and microstructure of the MPC was mainly investigated. The results showed that with the decrease of P/M, the fluidity of the MPC paste decreased gradually, the setting time extended, and the compressive strength increased first and then decreased. When the P/M was 1/4, the comprehensive performance of MPC was promising, which the fluidity was 110 mm, the setting time was 7 min, and the 1 d and 28 d compressive strengths were 20.0 MPa and 43.7 MPa, respectively. The microscopic test results showed that the hydration products of the MPC were MgKPO4·6H2O and Ca10(OH)2(PO4)2. After 28 d hydration reaction of the MPC, brucite did not completely reacted. With the decrease of P/M, the structural compactness of hardened matrix increased, the total porosity decreased.
Key words:  brucite    magnesium phosphate cement    P/M    macro-property    hydration products
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TU528.59  
基金资助: 国家重点研发计划(2022YFC3803103);国家自然科学基金(52108188);绿色建筑材料国家重点实验室开放基金(2022GBM10);中国水利水电科学研究院水利部水工程材料重点实验室(筹)开放研究基金(EMF202407)
通讯作者:  *王子赓,2008年7月、2011年7和2016年7月分别于长安大学、长安大学、美国密歇根理工大学获得工学学士学位、硕士学位和博士学位。现为北京工业大学城市建设学部副教授、硕士研究生导师。主要从事水泥混凝土及新型胶凝材料和结构的制备与分析研究工作。主持国家自然科学基金青年科学基金项目1项,国家重点实验室开放基金课题1项,北京市教委科技项目1项及企事业委托项目1项。参与各级科研项目10余项。出版专著1部,发表论文60余篇,获得专利10余件,参编行业标准2项。zigengw@bjut.edu.cn   
作者简介:  李悦,1993年7月、1996年7月和1999年7月分别于华北理工大学、武汉理工大学、武汉理工大学获得工学学士学位、硕士学位和博士学位。现为北京工业大学城市建设学部教授、博士研究生导师。主要研究领域为钢筋混凝土结构材料及建筑功能材料,主持完成国家重点研发计划课题、国家自然科学基金和北京市自然科学基金等国家和省部级课题30多项,发表论文260多篇,其中第一/通信作者SCI论文90余篇,出版专著3部。以第一完成人授权国家发明专利45件。获得国家级及省部级科技奖励奖13项。已入选国家高层次人才计划科技创新领军人才、国家百千万人才工程。
引用本文:    
李悦, 龙世儒, 王子赓, 王楠. 磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响[J]. 材料导报, 2024, 38(17): 23120159-6.
LI Yue, LONG Shiru, WANG Zigeng, WANG Nan. Effect of Molar Ratio of Phosphate to Magnesium on Properties of Magnesium Phosphate Cement Prepared by Natural Brucite. Materials Reports, 2024, 38(17): 23120159-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120159  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23120159
1 Sixie Z. Advances in Cement Research, 2018, 30(2), 83.
2 Lahalle H, Cau Dit Coumes C, Mercier C, et al. Cement and Concrete Research, 2018, 109, 159.
3 Li Y, Li Y Q, Shi T F, et al. Construction and Building Materials, 2015, 96, 346.
4 Li Y, Shi T F, Li J Q. Construction and Building Materials, 2016, 105, 384.
5 Li Y, Chen B. Construction and Building Materials, 2013, 47, 977.
6 Yu J C, Qian J S, Wang F, et al. Cement and Concrete Research, 2020, 138, 106235.
7 Cau Dit Coumes C, Rousselet A, Xu B, et al. Cement and Concrete Research, 2021, 150, 106608.
8 De Campos M, Davy C A, Djelal N, et al. Cement and Concrete Research, 2021, 142, 106346.
9 Wei Y, Zhou X T, Huang J, et al. Materials Reports, 2022, 36(4), 77 (in Chinese).
韦宇, 周新涛, 黄静, 等. 材料导报, 2022, 36(4), 77.
10 Sun H N, Guan Y, Bi W L, et al. Materials Reports, 2022, 36(19), 87 (in Chinese).
孙赫男, 关岩, 毕万利, 等. 材料导报, 2022, 36(19), 87.
11 Gao R, Song X F, Zhang X Y, et al. Bulletin of the Chinese Ceramic, 2014, 33(2), 346 (in Chinese).
高瑞, 宋学锋, 张县云, 等. 硅酸盐通报, 2014, 33(2), 346.
12 Dai J, Qian C X, Chen J, et al. Materials Reports, 2020, 34(6), 6066 (in Chinese).
戴俊, 钱春香, 陈竞, 等. 材料导报, 2020, 34(6), 6066.
13 Lahalle H, Cau Dit Coumes C, Mesbah A, et al. Cement and Concrete Research, 2016, 87, 77.
14 Su C L. Engineering Construction, 2020, 52(4), 70 (in Chinese).
苏春雷. 工程建设, 2020, 52(4), 70.
15 Huang H M, Xiao X M, Yang L P, et al. Water Science and Technology, 2011, 63(3), 468.
16 Feng L, Chen X Q, Wen X D, et al. Construction and Building Materials, 2019, 204, 550.
17 Le Rouzic M, Chaussadent T, Stefan L, et al. Cement and Concrete Research, 2017, 96, 27.
18 Xu B W, Ma H Y, Li Z J. Cement and Concrete Research, 2015, 68, 1.
19 Vijan C A, Badanoiu A, Voicu G, et al. Materials (Basel), 2021, 14(14), 1.
20 Qiao F, Chau C K, Li Z J. Construction and Building Materials, 2010, 24(5), 695.
21 Tan Y S, Zhang Z B, Wen J, et al. Environmental Research, 2022, 214, 113912.
22 Ribeiro D V, Paula G R D, Morelli M R. Materials Research (São Carlos, São Paulo, Brazil), 2020, 23(3), 1.
23 Qoku E, Scheibel M, Bier T, et al. Construction and Building Materials, 2021, 272, 121654.
24 Polat S, Sayan P. Journal of Crystal Growth, 2020, 531, 125339.
25 Qin J H, Qian J S, Dai X B, et al. Journal of the American Ceramic Society, 2021, 104(6), 2799.
26 Wang Q R, Chen H H, Hu S Z, et al. Earth Science, 2016, 41(11), 1921 (in Chinese).
王倩茹, 陈红汉, 胡守志, 等. 地球科学, 2016, 41(11), 1921.
27 Zhang G S, Wang Q, Li Y, et al. Cement and Concrete Research, 2023, 172, 107227.
28 Zulumyan N, Mirgorodski A, Isahakyan A, et al. Journal of Thermal Analysis and Calorimetry, 2014, 115(2), 1003.
29 Li Y, Lin H, Hejazi S M A S, et al. Construction and Building Materials, 2017, 149, 272.
[1] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[2] 刘雄飞, 王楠, 郝逸飞, 李辉. 磷酸镁水泥基帆布力学与微观性能研究[J]. 材料导报, 2024, 38(17): 23090003-6.
[3] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[4] 陈歆, 刘文, 崔安琪, 郑海涛, 黄馨, 杨文萃, 葛勇. 高海拔地区低温成型磷酸镁水泥砂浆力学与抗冻性能[J]. 材料导报, 2024, 38(17): 23120019-9.
[5] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[6] 孟祥瑞, 刘源涛, 陈兵, 王立艳. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报, 2024, 38(17): 24010084-7.
[7] 陈嘉伟, 张芸侨, 陈卓凡, 刘智, 李军, 卢忠远, 赖振宇. Mg(OH)2对磷酸镁水泥水化过程及性能的影响[J]. 材料导报, 2024, 38(17): 24010085-7.
[8] 田小革, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州. TPU/Nano-ZnO复合改性沥青的性能研究及微观机制[J]. 材料导报, 2024, 38(16): 23050071-10.
[9] 范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
[10] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[11] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[12] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[13] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[14] 董金美, 文静, 郑卫新, 贾利蕊, 常成功, 肖学英. 盐湖镁渣的热处理工艺及其对磷酸镁水泥性能的影响[J]. 材料导报, 2023, 37(23): 22040072-7.
[15] 朱倍, 徐迅, 胡海龙, 余波, 朱妍, 甘露. 基于改性剂调控517相改善碱式硫酸镁水泥耐水性能[J]. 材料导报, 2023, 37(19): 22050264-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed