Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21100182-6    https://doi.org/10.11896/cldb.21100182
  无机非金属及其复合材料 |
葡萄糖酸钠对硫铝酸盐水泥水化历程的影响
廖宜顺1,2,3,*, 王思纯1, 廖国胜1,2,3, 梅军鹏1,2,3, 陈迎雪1
1 武汉科技大学城市建设学院,武汉 430065
2 城市更新湖北省工程研究中心,武汉 430065
3 武汉科技大学高性能工程结构研究院,武汉 430065
Effect of Sodium Gluconate on Hydration Process of Calcium Sulfoaluminate Cement
LIAO Yishun1,2,3,*, WANG Sichun1, LIAO Guosheng1,2,3, MEI Junpeng1,2,3, CHEN Yingxue1
1 School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
2 Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan 430065, China
3 Institute of High Performance Engineering Structure, Wuhan University of Science and Technology, Wuhan 430065, China
下载:  全 文 ( PDF ) ( 4386KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了不同掺量的葡萄糖酸钠对硫铝酸盐水泥浆体的凝结时间、抗压强度、水化热、电阻率、内部温度和水化产物的影响。结果表明:掺入葡萄糖酸钠后,水泥浆体的凝结时间延长,水化热与电阻率的发展延缓,硬化浆体的12 h抗压强度降低,但28 d抗压强度提高。当葡萄糖酸钠的掺量从0%增加到0.15%时,水泥浆体水化初期的水化热和电阻率均明显减小,表明水泥水化延缓,当其掺量增加到0.2%时,水泥浆体的24 h电阻率和3 d水化热均剧烈减小。掺入葡萄糖酸钠可促进β-C2S的水化,但是使12 h水化产物钙矾石的热稳定性变差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
廖宜顺
王思纯
廖国胜
梅军鹏
陈迎雪
关键词:  硫铝酸盐水泥  葡萄糖酸钠  水化热  电阻率  水化产物    
Abstract: The effects of sodium gluconate (SG) on the setting time, compressive strength, heat of hydration, electrical resistivity, internal temperature, and hydration products of calcium sulfoaluminate cement (CSA) pastes were investigated. The results indicate that SG can prolong the setting time of cement pastes, delay the development of heat of hydration and electrical resistivity, decrease the compressive strength at 12 h, but increase the strength at 28 d. The heat of hydration and electrical resistivity during early hydration decreased with the increase of SG from 0% to 0.15%, which indicated that the cement hydration was delayed. Both the electrical resistivity at 24 h and the heat of hydration at 3 d were decreased significantly when the dosage of SG reached 0.2%. The addition of SG can promote the hydration of β-C2S, but decrease the thermal stability of ettringite at 12 h.
Key words:  calcium sulfoaluminate cement    sodium gluconate    heat of hydration    electrical resistivity    hydration product
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TQ172  
基金资助: 国家自然科学基金 (51608402);长江科学院开放研究基金 (CKWV2019756/KY)
通讯作者:  *廖宜顺,武汉科技大学城市建设学院副教授、硕士研究生导师。2007年河北工业大学环境工程专业学士毕业,2013年华中科技大学结构工程专业博士毕业。2013年7月至今于武汉科技大学任教。目前主要从事新型水泥材料、混凝土结构材料、固体废物资源化利用等方面的研究工作。主持国家自然科学基金项目等科研项目10项。发表学术论文60余篇,其中SCI、EI收录20余篇。liaoyishun@wust.edu.cn   
引用本文:    
廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
LIAO Yishun, WANG Sichun, LIAO Guosheng, MEI Junpeng, CHEN Yingxue. Effect of Sodium Gluconate on Hydration Process of Calcium Sulfoaluminate Cement. Materials Reports, 2023, 37(9): 21100182-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100182  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21100182
1 Shen Y, Chen X, Zhang W, et al. Construction and Building Materials, 2018, 193, 221.
2 Allevi S, Marchi M, Scotti F, et al. Materials and Structures, 2016, 49(1), 453.
3 Gartner E. Cement and Concrete Research, 2004, 34, 1489.
4 Zhang X W, He Y, Lu C X, et al. Construction and Building Materials, 2017, 157, 1065.
5 Li B X, Lv X D, Dong Y, et al. Construction and Building Materials, 2018, 168, 958.
6 Ma S H, Li W F, Zhang S B, et al. Construction and Building Materials, 2015, 91, 138.
7 Li G X, Li Y C, Shi C, et al. Bulletin of Chinese Ceramic Society, 2014, 33(12), 3295(in Chinese).
李国新, 李艳超, 史琛, 等. 硅酸盐通报, 2014, 33(12), 3295.
8 Li G X, Zhang J J, Song Z P, et al. Construction and Building Materials, 2018, 160, 427.
9 Li G X, Liu Y P, Huang R J, et al. Bulletin of Chinese Ceramic Society, 2016, 35(2), 386(in Chinese).
李国新, 刘元鹏, 黄汝杰, 等. 硅酸盐通报, 2016, 35(2), 386.
10 Wang J Y, Ye J Y, Cheng H, et al. Journal of the Chinese Ceramic Society, 2020, 48(8), 1285(in Chinese).
王敬宇, 叶家元, 程华, 等. 硅酸盐学报, 2020, 48(8), 1285.
11 Zou D H, Zhang Z J, Wang D M. Construction and Building Materials, 2020, 263, 120247.
12 Zhang G, Li G X, Li Y C. Construction and Building Materials, 2016, 126, 44.
13 Snyder R L. Powder Diffraction, 1992, 7(4), 186.
14 Wang Z J, He T S. Highway, 2006(7), 149(in Chinese).
王振军, 何廷树. 公路, 2006(7), 149.
15 Han J G, Yan P Y. Journal of the Chinese Ceramic Society, 2010, 38(4), 608(in Chinese).
韩建国, 阎培渝. 硅酸盐学报, 2010, 38(4), 608.
16 He Z, Yang H M, Liu M Y. Journal of Wuhan University of Technology-Materials Science Edtion, 2014, 29(1), 70.
17 Ye Z M, Chang J, Huang S F, et al. Advances in Cement Research, 2008, 20(4), 161.
18 Qian J S, Yu J C, Sun H Q, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1569(in Chinese).
钱觉时, 余金城, 孙化强, 等. 硅酸盐学报, 2017, 45(11), 1569.
19 Li D D. Journal of the Chinese Ceramic Society, 1984, 12(1), 119(in Chinese).
李德栋. 硅酸盐学报, 1984, 12(1), 119.
20 Huang G, Gupta R, Liu W V. Journal of Sustainable Cement-Based Materials, 2022, 11(5), 273.
21 Zajac M, Skocek J, Bullerjahn F, et al. Cement and Concrete Research, 2016, 84, 62.
22 Yu X, Yu C, Ran Q P, et al. Journal of the Chinese Ceramic Society, 2018, 46(2), 181(in Chinese).
余鑫, 于诚, 冉千平, 等. 硅酸盐学报, 2018, 46(2), 181.
23 Mendoza O, Giraldo C, Sergio S S, et al. Cement and Concrete Research, 2015, 74, 88.
24 Kishar E A. Cement and Concrete Research, 2005, 35(8), 1638.
25 Sánchez-herrero M J, Fernández-jiménez A, Palomo A. Journal of American Ceramic Society, 2017, 100(7), 3188.
26 Wang Q, Li S Y, Pan S, et al. Journal of Building Materials, 2020, 23(2), 239(in Chinese).
王琴, 李时雨, 潘硕, 等. 建筑材料学报, 2020, 23(2), 239.
27 Mota B, Matschei T. Cement and Concrete Research, 2019, 122, 59.
[1] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[2] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[3] 宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
[4] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[5] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[6] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[7] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[8] 刘川北, 高建明, 孟礼元, 刘来宝, 张礼华, 张红平, 罗旭. 聚合物和纤维对石膏基材料早期水化与浆体微结构的影响[J]. 材料导报, 2022, 36(8): 20090176-7.
[9] 池铭浩, 翁卫祥, 李强. 氧气流量及烧结保温时间对ITO靶材的相含量与电阻率的影响[J]. 材料导报, 2022, 36(5): 20120167-5.
[10] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[11] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[12] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[13] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[14] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
[15] 徐玲琳, 杨肯, 穆帆远, 杨正宏, 薛伶俐. 纤维素醚对硫铝酸盐水泥浆体水组分及水化产物演变的影响[J]. 材料导报, 2022, 36(10): 21010095-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed