Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20120167-5    https://doi.org/10.11896/cldb.20120167
  无机非金属及其复合材料 |
氧气流量及烧结保温时间对ITO靶材的相含量与电阻率的影响
池铭浩1, 翁卫祥2, 李强1
1 福州大学材料科学与工程学院,福州 350100
2 福州大学物理与信息工程学院,福州 350100
Effects of Oxygen Flow Rate and Sintering Holding Time on the Phase Content and Resistivity of ITO Target
CHI Minghao1, WENG Weixiang2, LI Qiang1
1 School of Materials Science and Engineering, University of Fuzhou, Fuzhou 350100, China
2 College of Physics and Information Engineering, University of Fuzhou, Fuzhou 350100, China
下载:  全 文 ( PDF ) ( 4034KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用注浆成型法在不同烧结参数下制备ITO靶材,研究不同氧气流量及烧结保温时间对ITO靶材的相含量与电阻率的影响。通过X射线衍射(XRD)和扫描电镜(SEM)对ITO靶材的物相组成以及微观组织形貌进行表征,运用Rietveld法对样品XRD数据进行结构精修以计算其相含量。研究结果表明:靶材均由主相(In2O3相)以及第二相(In4Sn3O12相)组成。当氧气流量由40 L/min提高到160 L/min时,第二相含量由19.82%(质量分数,下同)逐渐增加到25.83%;当保温时间由6 h延长到12 h时,第二相含量由19.79%逐渐增加到31.27%。对不同氧气流量以及烧结保温时间下所制备的样品进行相对密度以及电阻率测定,结果表明,靶材密度是影响其电阻率的最主要因素,靶材的电阻率随着密度的增加而降低。靶材密度相近时,靶材相含量对其电学性能有较大的影响,此时靶材的电阻率随着第二相含量的增加而增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
池铭浩
翁卫祥
李强
关键词:  ITO靶材  相含量  电阻率  Rietveld法精修    
Abstract: The ITO target was prepared by the grouting method at different sintering parameters, and the effects of different oxygen flow and sintering holding time on the phase content and resistivity of the ITO target were studied. The phase composition and microstructure morphology of the ITO target were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the XRD data of the sample was refined by the Rietveld method to calculate its phase content. The results show that the targets are composed of In2O3 phase and In4Sn3O12 phase. When the oxygen flow increases from 40 L/min to 160 L/min, the In4Sn3O12 phase content gradually increases from 19.82wt% to 25.83wt%. When the holding time increases from 6 h to 12 h, the In4Sn3O12 phase content gradually increased from 19.79wt% to 31.27wt%. The relative density and resistivity of samples prepared under different oxygen flow and sintering holding time were measured. The results showed that the target density is the most important factor affecting its resistivity, and the resistivity of the target decreases as the density increases. When the density of the target is similar, the phase content of the target influence its electrical performance. At this time, the resistivity of the target increases as the second phase increases.
Key words:  ITO target    phase content    resistivity    Rietveld refinement
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TF124  
基金资助: 福建省教育厅中青年教师教育科研项目(JAT160089)
通讯作者:  qli@fzu.edu.cn   
作者简介:  池铭浩,福州大学在读硕士研究生,2018年9月至今在福州大学材料科学与工程学院学习,主要从事功能陶瓷烧结方面的研究。
李强,福州大学材料科学与工程学院教授,博士生导师。1980—1984获兰州理工大学金属材料及热处理专业工学学士学位,1992—1995获哈尔滨工业大学材料科学与工程学院工学硕士学位,1995—1998获哈尔滨工业大学材料科学与工程学院工学博士学位,在国内外学术期刊发表论文70余篇,获得中国专利授权30余项。入选福建省“百千万人才工程”。主要从事等离子喷涂中的基本科学问题、激光材料加工与表面改性方面的研究。
引用本文:    
池铭浩, 翁卫祥, 李强. 氧气流量及烧结保温时间对ITO靶材的相含量与电阻率的影响[J]. 材料导报, 2022, 36(5): 20120167-5.
CHI Minghao, WENG Weixiang, LI Qiang. Effects of Oxygen Flow Rate and Sintering Holding Time on the Phase Content and Resistivity of ITO Target. Materials Reports, 2022, 36(5): 20120167-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120167  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20120167
1 Park J Y, Park H J. Journal of Nanoscience and Nanotechnology, 2020, 20(6), 3542.
2 Zhai X, Chen Y, Ma Y, et al.Ceramics International,2020,46(9),13660.
3 Xu J, Yang L, Wang H, et al. Journal of Materials Science: Materials in Electronics, 2015, 27(4), 3298.
4 Li Y H, Liu Z H, Li Q H, et al. Hydrometallurgy, 2011, 105, 207.
5 Li Y P, Liu Z H, Li Y H, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(1), 221(in Chinese).
李晏平, 刘志宏, 李玉虎,等.中国有色金属学报,2014,24(1),221.
6 Mei F S, Yuan T C, Li R D, et al. Journal of Materials Science: Mate-rials in Electronics, 2017, 28(21), 15996.
7 Mei F S, Qin K, Yuan T C, et al. Journal of Materials Science Materials in Electronics, 2017, 28(19), 14711.
8 Xu J W, Yang Z P, Zhang X W, et al. Journal of Materials Science Materials in Electronics, 2014, 25(2), 710.
9 Mei F S, Yuan T C, Li R D. Ceramics International,2017,43(12),8866.
10 Yang S, Sun B, Liu Y, et al. Ceramics International, 2020, 46, 6342.
11 Mei F S, Yuan T C, Li R D, et al. Ceramics International, 2017, 43(17), 14732.
12 Mei F S, Yuan T C, Li R D, et al. Journal of Materials Science: Mate-rials in Electronics, 2018, 29(17), 14620.
13 Qin K, Mei F S, Yuan T H, et al. Journal of Materials Science Materials in Electronics, 2018, 29(10), 7931.
14 Heward W J,Swenson D J.Journal of Materials Science,2007,42(17),7135.
15 Xie B, Yang S, Wang W N, et al. Materials Reports, 2020, 34(Z1), 29(in Chinese).
谢斌,杨硕,王伟宁,等. 材料导报, 2020, 34(Z1), 29.
16 González G B, Mason T O, Okasinski J S, et al. Journal of the American Ceramic Society, 2012, 95(2), 809.
[1] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[2] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[3] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[4] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[5] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[6] 谢斌, 杨硕, 王伟宁, 郗雨林. ITO靶材第二相In4Sn3O12的结构及其对靶材性能的影响[J]. 材料导报, 2020, 34(Z1): 29-33.
[7] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[8] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. 原子层沉积氮化钽薄膜的研究进展[J]. 材料导报, 2020, 34(19): 19101-19110.
[9] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[10] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[11] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[12] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[13] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[14] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[15] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed