Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20090212-7    https://doi.org/10.11896/cldb.20090212
  无机非金属及其复合材料 |
铝钼共掺杂氧化锌粉末的制备及光电性能研究
王南南1, 李继文1,*, 刘伟1,2, 李武会1, 张玉栋1, 雷金坤1, 徐流杰3
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 有色金属新材料与先进加工技术省部共建协同创新中心,河南 洛阳 471023
3 金属材料磨损控制与成型技术国家地方联合工程研究中心,河南 洛阳 471003
Preparation and Photoelectric Properties of Aluminum-Molybdenum Co-doped Zinc Oxide Powders
WANG Nannan1, LI Jiwen1,*, LIU Wei1,2, LI Wuhui1, ZHANG Yudong1, LEI Jinkun1, XU Liujie3
1 School of Material Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 National Joint Collaborative Innovation Center for Nonferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023,Henan, China
3 National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003, Henan, China
下载:  全 文 ( PDF ) ( 7103KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法制备了不同含量的铝(Al)单元掺杂及铝(Al)、钼(Mo)共掺杂氧化锌(AZO、AZMO)纳米粉体,利用X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、荧光分光光度计(PL)、紫外分光光度计(UV-vis)、TG-DTA差热分析、激光粒度分析仪、四探针电阻测试仪等测试手段,探究了Al单元掺杂和Al、Mo共掺对AZO、AZMO粉体结构、形貌及光电性能的影响。结果表明:所制备的AZO和AZMO纳米粉体为结晶度良好的六方纤锌矿结构。Al、Mo掺杂浓度影响纳米氧化锌粉体形貌、晶体结构及光电性能。随着Al、Mo掺杂浓度的增加,粉体的结晶质量降低,晶粒尺寸先减小后增大,光电性能先变好后变差。适度的Al、Mo共掺杂可使氧化锌禁带宽度和电阻率达到最优匹配,改善氧化锌的近紫外发光和蓝色发光特性。在掺杂浓度为m(Al)∶m(Mo)=1∶3时,纳米粉体的综合光电性能最佳,禁带宽度为3.392 eV,电阻率为20.3 Ω·m,紫外发光峰强度最大,且出现了蓝移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王南南
李继文
刘伟
李武会
张玉栋
雷金坤
徐流杰
关键词:  水热法  铝钼共掺杂  纳米氧化锌  禁带宽度  光致发光  电阻率    
Abstract: Aluminum (Al) doped, Al and molybdenum (Mo) co-doped zinc oxide (AZO,AZMO) nanometer powders were prepared via hydrothermal method. The effects of single Al doping and Al-Mo co-doping on the structure, morphology and photoelectric properties of AZO,AZMO powders were cha-racterized and analyzed by using X-ray diffractometer (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (TEM), fluorescence spectrophotometer (PL), ultraviolet spectrophotometer, TG-DTA differential thermal analysis, laser particle size analyzer, and four-probe resistance tester. The results show that both of AZO and AZMO nanometer powders are hexaploid wurtzite structure with good crystallinity. The doping concentration of Al and Mo has an impact on the morphology, crystal structure and photoelectric pro-perties of nano-sized zinc oxide powder. As the doping concentration increases, the degree of crystallinity decreases, and the grain size decreases first and then increases. Photoelectric performance rises first and then drops with the increase of doping concentration. The appropriate co-doping concentration of Al and Mo can achieve the optimal match of band gap width and resistivity as well as the improvement of the near ultraviolet and blue luminescence properties. When the ration of the doping concentration for m(Al)∶m(Mo) is 1∶3, the best comprehensive photoelectric properties of nanometer AZMO powders can be obtained with the forbidden band width of 3.392 eV and the resistivity of 20.3 Ω·m. The ultraviolet luminescence peak intensity is the highest and appears blue shift.
Key words:  hydrothermal method    Al and Mo co-doping    nanometer zinc oxide    band gap width    photoluminescence    resistivity
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TN304.2  
基金资助: 国家自然科学基金(U1804124)
通讯作者:  ljwzq@163.com   
作者简介:  王南南,2018年6月毕业于河南科技大学,获得工程学士学位。2018年9月继续在河南科技大学学习,主要从事掺杂氧化锌纳米复合材料的制备与研究。
李继文,河南科技大学材料科学与工程学院,教授/博士。主要从事金属材料冶金与成形技术的研发工作,重点研究钨钼难熔金属湿法冶金、过程材料制备以及高性能材料加工技术。
引用本文:    
王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
WANG Nannan, LI Jiwen, LIU Wei, LI Wuhui, ZHANG Yudong, LEI Jinkun, XU Liujie. Preparation and Photoelectric Properties of Aluminum-Molybdenum Co-doped Zinc Oxide Powders. Materials Reports, 2022, 36(4): 20090212-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090212  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20090212
1 Manaia E B, Kaminski E A. European Journal of Nanomedicine, 2015, 7(2), 109.
2 Ogata K, Kawanishi T, Sakurai K E A. Physica Status Solidi, 2015, 229(2), 915.
3 Hong W K, Sohn J I, Cha S N E A. Applied Surface Science, 2015, 324, 512.
4 Sharma A, Franklin J B, Singh B E L. Organic Electronics, 2015, 24, 131.
5 Zhao Z, Song J L, Zheng J H, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(5), 1434.
6 Pei C, Liu B, Liu J, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(82), 17674.
7 Hassan A K, Ali G M. Superlattices Microstructures, 2020, 147(1), 28.
8 Seid E T, Dejene F B. Journal of Materials Science Materials in Electro-nics, 2019, 30(12), 11833.
9 Auhs R,Kim H S. Materials, 2018, 11(1), 37.
10 Liu Q, Zhu P, Li G, et al.In: Proceedings of the 17th International Conference on Electronic Packaging Technology (ICEPT). Wuhan, China,2016.
11 Patil P R, Joshi S C. Materials Chemistry Physics, 2007, 105(2-3), 354.
12 Ghica D, Vlaicu I D, Stefan M, et al. Entific Reports, 2019, 9(1), 6894.
13 Kumar M, Basu T, Som T. Journal of Applied Physics, 2016, 119(1), 015307.
14 Liu C, Meng D, Wu X. Materials Research Bulletin, 2011, 46(9), 1414.
15 Xiao Z H, Zhong W, Xu S J. Advanced Materials Research, 2013, 750-752(2), 873.
16 Sidorov N V, Palatnikov M N, Yanichev A A. Technical Physics, 2017, 62(3), 417.
17 Toubane M, Talaighil R, Bensouici F, et al. Ceramics International, 2016, 42(8), 9673.
18 Srivastava T, Bajpai G, Sen S. Journal of Physics Conference, 2018, 987(1), 1088.
19 He H Y, Yu H Y. International Journal of Materials Research, 2013, 102(5), 556.
20 Suwanboon S, Amornpitoksuk P, Haidoux A E. Journal of Alloys Compounds, 2008, 462(1), 335.
21 Gu B, Pliss A, Kuzmin A N, et al. Biomaterials, 2016, 104(1), 78.
22 Tauc J, Grigorovici R, Vancu A, et al. Physica Status Solidi, 1966, 15(2), 627.
23 Nemati H, Liu S, Moheghi A, et al. Journal of Molecular Liquids, 2018, 267(1), 120.
24 Vito A D, Pecchia A, Carlo A D, et al. Japanese Journal of Applied Physics, 2019, 58(SC), SCCC03.
25 Suwanboon S, Amornpitoksuk P, Haidoux A, et al. International Journal of Photoenergy, 2008, 462(1-2), 335.
26 Hur T B, Jeen G S, Hwang Y H, et al. Journal of Applied Physics, 2003, 94(9), 5787.
27 Pengshou X, Yuming S, Chaoshu S. Science in China Series A, 2001, 44(9), 1174.
28 Genylmaz O, Atay F, Akyz D, et al. Modern Physics Letters B, 2016, 30(15), 1650171.
29 Markevich I, Stara T, Khomenkova L, et al. Aims Materials Science, 2016, 3(2), 508.
30 Han J, Mantas P Q, Senos Amrjjotec S. Journal of the European Ceramic Society, 2001, 21(10-11), 1883.
31 Yang L, Liu Q, Zheng H, et al. Journal of Physics Chemistry of Solids, 2019, 137(2), 109215.
[1] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[2] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[3] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[4] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[5] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[6] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[7] 胡明玉, 周侠, 李晔, 谭煜秋. TiO2/硅藻土/泥炭藓复合光催化调湿材料研究[J]. 材料导报, 2021, 35(10): 10036-10041.
[8] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[9] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[10] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[11] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[12] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[13] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. 原子层沉积氮化钽薄膜的研究进展[J]. 材料导报, 2020, 34(19): 19101-19110.
[14] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[15] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed