Preparation and Photoelectric Properties of Aluminum-Molybdenum Co-doped Zinc Oxide Powders
WANG Nannan1, LI Jiwen1,*, LIU Wei1,2, LI Wuhui1, ZHANG Yudong1, LEI Jinkun1, XU Liujie3
1 School of Material Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China 2 National Joint Collaborative Innovation Center for Nonferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023,Henan, China 3 National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Luoyang 471003, Henan, China
Abstract: Aluminum (Al) doped, Al and molybdenum (Mo) co-doped zinc oxide (AZO,AZMO) nanometer powders were prepared via hydrothermal method. The effects of single Al doping and Al-Mo co-doping on the structure, morphology and photoelectric properties of AZO,AZMO powders were cha-racterized and analyzed by using X-ray diffractometer (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (TEM), fluorescence spectrophotometer (PL), ultraviolet spectrophotometer, TG-DTA differential thermal analysis, laser particle size analyzer, and four-probe resistance tester. The results show that both of AZO and AZMO nanometer powders are hexaploid wurtzite structure with good crystallinity. The doping concentration of Al and Mo has an impact on the morphology, crystal structure and photoelectric pro-perties of nano-sized zinc oxide powder. As the doping concentration increases, the degree of crystallinity decreases, and the grain size decreases first and then increases. Photoelectric performance rises first and then drops with the increase of doping concentration. The appropriate co-doping concentration of Al and Mo can achieve the optimal match of band gap width and resistivity as well as the improvement of the near ultraviolet and blue luminescence properties. When the ration of the doping concentration for m(Al)∶m(Mo) is 1∶3, the best comprehensive photoelectric properties of nanometer AZMO powders can be obtained with the forbidden band width of 3.392 eV and the resistivity of 20.3 Ω·m. The ultraviolet luminescence peak intensity is the highest and appears blue shift.
1 Manaia E B, Kaminski E A. European Journal of Nanomedicine, 2015, 7(2), 109. 2 Ogata K, Kawanishi T, Sakurai K E A. Physica Status Solidi, 2015, 229(2), 915. 3 Hong W K, Sohn J I, Cha S N E A. Applied Surface Science, 2015, 324, 512. 4 Sharma A, Franklin J B, Singh B E L. Organic Electronics, 2015, 24, 131. 5 Zhao Z, Song J L, Zheng J H, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(5), 1434. 6 Pei C, Liu B, Liu J, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(82), 17674. 7 Hassan A K, Ali G M. Superlattices Microstructures, 2020, 147(1), 28. 8 Seid E T, Dejene F B. Journal of Materials Science Materials in Electro-nics, 2019, 30(12), 11833. 9 Auhs R,Kim H S. Materials, 2018, 11(1), 37. 10 Liu Q, Zhu P, Li G, et al.In: Proceedings of the 17th International Conference on Electronic Packaging Technology (ICEPT). Wuhan, China,2016. 11 Patil P R, Joshi S C. Materials Chemistry Physics, 2007, 105(2-3), 354. 12 Ghica D, Vlaicu I D, Stefan M, et al. Entific Reports, 2019, 9(1), 6894. 13 Kumar M, Basu T, Som T. Journal of Applied Physics, 2016, 119(1), 015307. 14 Liu C, Meng D, Wu X. Materials Research Bulletin, 2011, 46(9), 1414. 15 Xiao Z H, Zhong W, Xu S J. Advanced Materials Research, 2013, 750-752(2), 873. 16 Sidorov N V, Palatnikov M N, Yanichev A A. Technical Physics, 2017, 62(3), 417. 17 Toubane M, Talaighil R, Bensouici F, et al. Ceramics International, 2016, 42(8), 9673. 18 Srivastava T, Bajpai G, Sen S. Journal of Physics Conference, 2018, 987(1), 1088. 19 He H Y, Yu H Y. International Journal of Materials Research, 2013, 102(5), 556. 20 Suwanboon S, Amornpitoksuk P, Haidoux A E. Journal of Alloys Compounds, 2008, 462(1), 335. 21 Gu B, Pliss A, Kuzmin A N, et al. Biomaterials, 2016, 104(1), 78. 22 Tauc J, Grigorovici R, Vancu A, et al. Physica Status Solidi, 1966, 15(2), 627. 23 Nemati H, Liu S, Moheghi A, et al. Journal of Molecular Liquids, 2018, 267(1), 120. 24 Vito A D, Pecchia A, Carlo A D, et al. Japanese Journal of Applied Physics, 2019, 58(SC), SCCC03. 25 Suwanboon S, Amornpitoksuk P, Haidoux A, et al. International Journal of Photoenergy, 2008, 462(1-2), 335. 26 Hur T B, Jeen G S, Hwang Y H, et al. Journal of Applied Physics, 2003, 94(9), 5787. 27 Pengshou X, Yuming S, Chaoshu S. Science in China Series A, 2001, 44(9), 1174. 28 Genylmaz O, Atay F, Akyz D, et al. Modern Physics Letters B, 2016, 30(15), 1650171. 29 Markevich I, Stara T, Khomenkova L, et al. Aims Materials Science, 2016, 3(2), 508. 30 Han J, Mantas P Q, Senos Amrjjotec S. Journal of the European Ceramic Society, 2001, 21(10-11), 1883. 31 Yang L, Liu Q, Zheng H, et al. Journal of Physics Chemistry of Solids, 2019, 137(2), 109215.