Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19101-19110    https://doi.org/10.11896/cldb.19070231
  金属与金属基复合材料 |
原子层沉积氮化钽薄膜的研究进展
乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰
上海交通大学电子信息与电气工程学院,先进电子材料与器件平台,上海 200240
Research Progress on Atomic Layer Deposition of TaNx Film
WU Liying, QU Minni, FU Xuecheng, TIAN Miao, MA Ling, WANG Ying, CHENG Xiulan
Center for Advanced Electronic Materials and Devices, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 5339KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在集成电路中,铜互连工艺需要沉积一层连续且保形性良好的铜阻挡层。氮化钽是一种过渡金属氮化物,由于其硬度高,导电性可控,对金属元素具有扩散阻挡的作用,在微电子工业领域中氮化钽是铜互连技术中研究最为广泛的扩散阻挡层材料。随着集成电路特征尺寸的减小及沟槽深宽比的增加,早期的物理气相沉积(PVD)工艺难以满足其未来的制作需求,因此原子层沉积(ALD)技术对制备超薄氮化钽阻挡层起着至关重要的作用。
大部分ALD氮化钽薄膜的工艺优化主要集中在控制前驱体及还原气体的成分和工艺,以避免生成高阻态Ta3N5。这是由于器件关键尺寸的持续缩小会导致铜互连体积减小和阻挡层TaN在铜线中所占比例增加,而相比于铜阻挡层材料(TaN电阻率小于0.25 mΩ·cm; Ta3N5电阻率约为6 Ω·cm), 铜的电阻率(1.67 μΩ·cm)极低,因此阻挡层在铜互连中所占比例增加必然导致互连线导电性减弱。同时,互连线导电性不好还会导致器件工作信号传输延迟和工作能耗增加,因此,铜阻挡层的厚度应尽量薄。此外,这层极薄的铜扩散阻挡层需要被连续沉积在器件的层间绝缘层(ILD)上,且阻挡层的薄膜不能有任何孔洞,而原子层沉积则是能够同时满足上述条件的薄膜制备技术。
对于原子层沉积氮化钽,以钽卤化物或有机钽金属作为前驱体,采用原子层沉积工艺制备的薄膜已得到广泛研究。然而,这些前驱体在原子层沉积过程中会产生腐蚀性副产物,并不适合工业应用。此外,这些前驱体在室温下均为固体,可能导致设备及所沉积薄膜被颗粒污染。因此,学者们开发出醇盐基、酰胺基等金属有机前驱体用于薄膜的制备。研究表明,钽的醇盐类前驱体通常含有氧元素,会使原子层沉积的氮化钽有较高的氧残留;而使用酰胺基或酰亚胺基前驱体则可以制备出氧杂质含量较少的薄膜,但其热稳定性较差。
本文综述了近年来原子层沉积氮化钽薄膜的研究进展,重点综述了热型原子层沉积和利用等离子体辅助原子层沉积氮化钽薄膜的研究结果及现状,详细介绍了不同前驱体以及不同工艺的沉积结果,总结了各工艺的优缺点,为氮化钽沉积工艺用于实际生产提供了借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乌李瑛
瞿敏妮
付学成
田苗
马玲
王英
程秀兰
关键词:  TaN薄膜  原子层沉积  等离子增强型原子层沉积  电阻率  铜阻挡层    
Abstract: For the copper interconnect process in microelectronics, it requires to deposit a continuous and well-shaped copper barrier layer. Tantalum nitride is a transition metal nitride and acts as diffusion barrier to metal interconnect, due to its high hardness and controllable electrical conductivity. In the microelectronics industry, tantalum nitride is one of the most widely studied diffusion barrier materials in copper interconnection technology, with the decrease of critical dimension for integrated circuit and the increase of aspect ratio, the early PVD process is difficult to meet future production requirements, thus atomic layer deposition technique plays a crucial role for ultra-thin tantalum nitride barrier layer.
The process optimization of most ALD tantalum nitride thin films is mainly focused on controlling the composition and process of precursor and reducing agent to avoid the formation of high-resistance Ta3N5. With the continuous decrease of the feature size of circuit devices, the proportion of TaN barrier layer to Cu metal is also decreasing due to the limited dimension of interconnect line. Considering the significantly lower resistivity (1.67 μΩ·cm ) of Cu interconnect lines relative to those of Cu barrier materials (The resistivity of TaN is lower than 0.25 mΩ·cm, and the resistivity of copper is extremely low (1.67 μΩ·cm), this can result in poor conductivity of the entire interconnect. As the high resistivity of the interconnect line eventually leads to delays in working signal transmission, as well as high power consumption of device, the thickness of Cu barrier layer should be minimized. In addition, the extremely thin copper diffusion barrier layer is required to be deposited continuously on the interlayer insulator layer (ILD) of the device. Atomic layer deposition technology can meet these conditions simultaneously.
For the atomic layer deposition of tantalum nitride, the tantalum halide or tantalum metal organic is used as the precursor, and the film prepared by the atomic layer deposition process has been extensively studied. In addition, these precursors are solid at room temperature, which may result in particle contamination of the device and the deposited film. Subsequently, metal-organic precursors such as alkoxide and amido were developed for the preparation of thin films. Studies have shown that tantalum alkoxide precursor usually contains oxygen element, which leads to higher oxygen residue of tantalum nitride deposited in the atomic layer. However, amide-group or imide-group precursors can prepare films with less oxygen impurities, but their thermal stability is poor.
In this paper, the research progress of atomic layer deposited tantalum nitride is reported. The progress of thermal atomic layer deposition (TALD) and the plasma enhanced atomic layer deposition (PEALD) of tantalum nitride thin film are reviewed. The process parameters and the properties of TaN thin films prepared with inorganic tantalum halide and tantalum metal organics as precursors are summarized. The advantages and disadvantages of each process are compared.
Key words:  TaN film    atomic layer deposition (ALD)    plasma enhanced atomic layer deposition (PEALD)    resistivity    Cu barrier layer
                    发布日期:  2020-11-05
ZTFLH:  TB34  
基金资助: 国家科技部“十三五”高性能计算重点研发计划项目子课题(2016YFB0200205);2018年度上海研发公共服务平台建设项目(18DZ2295400);上海交通大学决策咨询课题(JCZXSJB2019-005;JCZXSJB2018-022)
通讯作者:  lynn_wu@sjtu.edu.cn   
作者简介:  乌李瑛,上海交通大学先进电子材料与器件平台,助理研究员。2001年9月至2011年1月,在西安交通大学获得应用物理专业理学学士学位和凝聚态物理专业理学博士学位。其中2008—2010年到美国宾夕法尼亚州立大学和德州大学圣安东尼奥分校进行访问、合作研究。以第一作者在国内外学术期刊上发表论文10余篇。研究工作主要围绕国家重点发展的先进材料的薄膜生长工艺和纳米器件的加工工艺。
引用本文:    
乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. 原子层沉积氮化钽薄膜的研究进展[J]. 材料导报, 2020, 34(19): 19101-19110.
WU Liying, QU Minni, FU Xuecheng, TIAN Miao, MA Ling, WANG Ying, CHENG Xiulan. Research Progress on Atomic Layer Deposition of TaNx Film. Materials Reports, 2020, 34(19): 19101-19110.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070231  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19101
1 Sun X, Kolawa E, Chen J S, et al. Thin Solid Films,1993,236(1-2),347.
2 Holloway K, Fryer F M, Cabral C, et al. Journal of Applied Physics,1992,71(11),5433.
3 Edelstein D, Uzoh C, Cabral C, et al. In: IEEE International Interconnect Technology Conference. Burlingame, USA,2001,pp.9.
4 Rossnagel S M, Kim H. In: IEEE International Interconnect Technology Conference. Burlingame, USA,2001,pp.3.
5 Miikkulainen V, Leskela M, Ritala M, et al. Journal of Applied Physics,2013,113(2),021301-1.
6 Violet P, Blanquet E, Bacq O L. Microelectronic Engineering,2006,83,2077.
7 Stampfl C, Freeman A J. Physics Review B,2003,67(6),064108-1.
8 Fang C M, Orhan E, Wijs G A D, et al. Journal of Material Chemistry,2001,11,1248.
9 Ghosh K L P, Biswas D, Meikap A K, et al. Solid State Communication,2004,131,479.
10 Langereis E, Knoops H C M, Mackus A J M, et al. Journal of Applied Physics,2007,102(8),083517-1.
11 Dekkers H F W, Lima L P B. ECS Transactions,2013,58,195.
12 Brize V, Prieur T, Violet P, et al. Chemical Vapor Deposition,2001,17,284.
13 Alen P, Juppo M, Ritala M, et al. Journal of The Electrochemical Society,2001,148,G566.
14 Wu Y Y, Kohn A, Eizenberg M. Journal of Applied Physics,2004,95,6167.
15 Burton R R, Lavoie A R, Georges S M. Journal of the Electrochemical Society,2008,155(7),D508.
16 Han J H, Kim H Y, Lee S C, et al. Applied Surface Science,2016,362,176.
17 Lee H J, Park J S, Kwon S H. Journal of Electroceramics,2016,36(1-4),165.
18 Chung H S, Kwon J D, Kang S W. Journal of the Electrochemical Society,2006,153(11),C751.
19 Hiltunen L, Leskela M, Makela M, et al. Thin solid films,1988,166(1),149.
20 Ritala M, Kalsi P, Riihelii D, et al. Chemistry of Materials,1999,11(7),1712.
21 Ritala, M, Leskela M, Rauhala E, et al. Journal of the Electrochemical Society,1995,142(8),2731.
22 Ritala M, Leskela M, Rauhala E, et al. Journal of the Electrochemical Society,1998,145(8),2914.
22 Ritala M, Asikainen T, Leskela M, et al. Applied Surface Science,1997,120(3-4),199.
24 Elers K E, Ritala, M, Leskela M, et al. Applied Surface Science,1994,82-83,468.
25 Alen P, Juppo M, Ritala M, et al. Journal of the Electrochemical Society,2001,148(10),G566.
26 Alen P, Juppo M, Ritala M, et al. Journal of Materials Research,2002,17(1),107.
27 Somani S, Mukhopadhyay A, Musgrave C. Journal of Physical Chemistry C,2011,115,11507.
28 Gerstenberg D, Calbick C J. Journal of Applied Physics,1964,35(2),402.
29 Willmott D J. Journal of Applied Physics,1972,43(12),4865.
30 Hieber K. Thin Solid Films,1974,24(1),157.
31 Shin C S, Kim Y W, Gall D, et al. Thin Solid Films,2002,402(1-2),172.
32 Kim H, Kellock A J, Rossenagel S M. Journal of Applied Physics,2002,92,7080.
33 Bae N J, Na K I, Cho H I, et al. Japanese Journal of Applied Physics,2006,45(12),9072.
34 Fang Z W, Aspinall H C, Odedra R. Journal of Crystal Growth,2011,331,33.
35 Chaneliere C, Autran J L, Devine R A B, et al. Materials Science and Engineering R: Reports,1998,22,269.
36 Profijt H B, Potts S E, Sanden M C M V D, et al. Journal of Vacuum Science Technology A,2011,29,050801.
37 Keijser M D, Opdorp C V. Applied Physics Letters,1991,58,1187.
38 Park J S, Lee M J, Lee C S, et al. Solid State Letter,2001,4(4),C17.
39 Straten O V D, Zhu Y, Eisenbraun E, et a1. Materials Research Society Symposia Proceedings,2002,716,B11.
40 Na K I, Park S J, Jeong W C,et al . Materials Research Society Symposia Proceedings,2003,766,E3.
41 Knoops H C M, Baggetto L, Langereis E, et al. Journal of the Electrochemical Society,2008,155(12),G287.
42 Knoops H C M, Langereis E, Sanden M C M V D, et al. Journal of Vacuum Science Technology A,2012,30(1),01A101-1.
43 Heil S B S, Roozeboom F, Sanden M C M V D, et al. Journal of Vacuum Science Technology A,2008,26(3),472.
44 Matero R, Rahtu A, Ritala M. Chemistry Materials,2001,13(12),4506.
45 Matero R, Rahtu A, Ritala M. Langmuir,2005,21(8),3498.
46 Henn-Lecordier L, Lei W, Anderle M, et al. Journal of Vacuum Science Technology B,2007,25(1),130.
47 Kim H, Detavenier C, Straten O V D, et al. Journal of Applied Physics,2005,98(1),014308.
48 Xie Q, Deduytsche D, Musschoot J, et al. Microelectronic Engineering,2011,88(5),646.
49 Maeng W J, Park S J, Kim H. Journal of Vacuum Science Technology B,2006,24(5),2276.
50 Elangovan T, Murugeshan S, Mangalaraj D, et al. Journal of Alloys and Compounds,2011,509(22),6400.
51 Knuyt G, Quaeyhaegens C, Haen J D, et al. Thin Solid Films,1995,258,159.
52 Veloso A, Boccardi G, Ragnarsson L A, et al. In: IEEE Symposium on VLSI Technology. Kyoto,2013,pp.194.
53 Gao W, Conley J F, Ono Y. Materials Research Society Symposia Procee-dings,2003,765,D1.4.
54 Dekkers H F W, Ragnarsson L A, Schram T, et al. Journal of Applied Physics,2018,124,165307.
55 Ma X L, Yang H, Wang W W, et al. Journal of Semiconductors,2014,35,096001.
56 Cui H S, Luo J, Xu J, et al. Vacuum,2015,119,185.
57 Rossnagel S M, Sherman A, Turner F. Journal of Vacuum Science Technology B,2000,18(4),2016.
58 Olowolafe J O, Mogab C J. Journal of Applied Physics,1992,72(9),4099.
[1] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[2] 郭俊江,朱香平,许彦涛,曹伟伟,邹永星,陆敏,彭波,司金海,郭海涛. 原子层沉积微通道板的研究进展[J]. 材料导报, 2020, 34(3): 3080-3089.
[3] 罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
[4] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[5] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[6] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[7] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[8] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[9] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[10] 贾兴文, 张新, 马冬, 杨再富, 石从黎, 王智. 导电混凝土的导电性能及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 90-97.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed