Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19094-19100    https://doi.org/10.11896/cldb.19070273
  金属与金属基复合材料 |
轻质高熵合金的研究现状与发展趋势
季承维1, 马爱斌1,2, 江静华1
1 河海大学力学与材料学院,南京 211100
2 宿迁市河海大学研究院,宿迁223800
Research Status and Development Trend of Lightweight High-entropy Alloys
JI Chengwei1, MA Aibin1,2, JIANG Jinghua1
1 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
2 Suqian Research Institute, Hohai University, Suqian 223800, China
下载:  全 文 ( PDF ) ( 5062KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金只有15年的研究历史,由于具有独特的成分设计、简单的微观结构、优异的性能而受到广泛关注。根据元素的选取不同,高熵合金也被划分为3d过渡金属元素高熵合金、难熔高熵合金、镧系过渡金属元素高熵合金以及轻质高熵合金等。其中,轻质高熵合金在2010年之后才进入人们的视野,其组成元素大多为轻金属,在具备高强度、高硬度、耐磨损、耐腐蚀等优异性能的同时,还具备密度小的优点,可用于航空航天、新能源汽车、军事工业等领域,具有远大的发展前景。
然而,制约轻质高熵合金发展的因素也很多,主要为理论机制的不完善、制备工艺的不成熟以及生产成本高昂。理论机制不完善主要体现在高熵合金的相结构难以预测以及四大效应不能完全解释高熵合金微观结构和性能的独特性;制备工艺的不成熟主要体现在块体轻质高熵金的制备方式较少且不利于大批量工业生产;成本高昂主要体现在大多数轻金属单质价格昂贵且每种元素在轻质高熵合金中的成分占比较高。由于发展历程较短,上述问题还不能得到有效解决,目前对轻质高熵合金的研究集中在:根据现有的理论及生产水平,设计密度低、力学性能优异的新型合金。
目前,成功开发出的轻质高熵合金有Al20Li20Mg10Sc20Ti30、Al20Be20Fe10Si15Ti35以及AlLiMgZnSn等,这些合金分别采用机械合金化法、电弧熔炼法以及感应熔炼法进行制备,拥有低密度、高强度的优点,这些制备工艺为今后的研究提供指导。
本文归纳了轻质高熵合金的研究进展,分别对轻质高熵合金的四大效应、设计原则、制备工艺、微观结构和力学性能进行了介绍,分析了现阶段轻质高熵合金研究的不足之处并对轻质高熵合金未来在生产生活中的应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季承维
马爱斌
江静华
关键词:  轻质高熵合金  四大效应  设计原则  微观结构  力学性能    
Abstract: High-entropy alloys were proposed 15 years ago, which have received extensive attention because of their unique composition, simple microstructure and superior performance. According to the selection of elements, high-entropy alloys can be classified into several types, include 3d transition metal elements high-entropy alloys, refractory high-entropy alloys, lanthanide transition metal elements high-entropy alloys,lightweight high-entropy alloys and so on. Lightweight high-entropy alloys have been studied since 2010, their constituent elements mostly are light metal elements. Lightweight high-entropy alloys have the advantages of high strength, high hardness, abrasion resistance, corrosion resistance and light weight. They can be used in aerospace, new energy vehicles, military industry and other fields. So lightweight high-entropy alloys have great development prospect.
However, many factors restrict the development of lightweight high-entropy alloys, these factors include imperfect theoretical mechanism, immature preparation technology and high production cost. Imperfect theoretical mechanism is mainly reflected in the fact that four core effects cannot accurately explain the unique microstructure and properties of high-entropy alloys, and predicting the phase formation of lightweight high-entropy alloys is difficult. Immature preparation technology is mainly reflected in the fact that lightweight high-entropy alloys have few ways to be prepared and they are not conducive to mass production. The high cost is mainly reflected in the fact that many light metals are expensive and the atomic ratio of each element is very high. Due to the short history of lightweight high-entropy alloys, the above problems cannot be solved effectively. At present, researches focus on designing and preparing lightweight high-entropy alloys with low density and excellent mechanical properties according to the existing theories and production level.
At present, some lightweight high-entropy alloys have been successfully prepared, such as Al20Li20Mg10Sc20Ti30, Al20Be20Fe10Si15Ti35 and AlLiMgZnSn. Their processing methods are as follows: mechanical alloying, arc melting and induction melting. They have high strength and low density which can provide guidance for other research.
This review offers a retrospection of the research effortson lightweight high-entropy alloys, and provides elaborate descriptions about the core effects, the designing principles, the process routes, the microstructure and the mechanical properties. Meanwhile, the shortcomings of research on lightweight high-entropy alloys are analyzed and the future application of lightweight high-entropy alloys is prospected.
Key words:  lightweight high-entropy alloys    four effects    designing principles    microstructure    mechanical properties
                    发布日期:  2020-11-05
ZTFLH:  T146.22  
基金资助: 国家自然科学基金(51774109);江苏省重点研发计划项目(BE2017148)
通讯作者:  aibin-ma@hhu.edu.cn   
作者简介:  季承维,2018年6月毕业于河海大学金属材料工程系,获得工学学士学位。现为河海大学力学与材料学院硕士研究生,在马爱斌教授的指导下进行研究。目前主要研究领域为高熵合金。
马爱斌,河海大学力学与材料学院教授、博士研究生导师。教育部“高等学校骨干教师”、日本学术振兴会博士后特别资助获得者。1985年本科毕业于东南大学材料科学与工程系并留校任教,1997年在日本爱知工业大学取得工学博士学位,2001年开始在日本产业技术综合研究所进行博士后研究工作,2005年回国到河海大学任教,现任宿迁市河海大学研究院常务副院长。主要从事材料组织超细化、强韧化与耐蚀化等的研究工作,在Acta Materialia、Applied Catalysis B: Environmental、Scripta Materialia、Corrosion Science、Journal of Power Sources等SCI期刊上发表论文200余篇,获授权中国、日本等国发明专利20余项,出版了《海上风电场防腐工程》《现代工业训练教程-金属热处理及质量检验》等专著。
引用本文:    
季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19094-19100.
JI Chengwei, MA Aibin, JIANG Jinghua. Research Status and Development Trend of Lightweight High-entropy Alloys. Materials Reports, 2020, 34(19): 19094-19100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070273  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19094
1 Yeh J W, Lin S J, Chin T S, et al. Metallurgical and Materials Transactions A, 2004, 35(8), 2533.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Chen T K, Shun T T, Yeh J W, et al.Surface and Coatings Technology, 2004, 188, 193.
4 Huang P K, Yeh J W, Shun T T, et al. Advanced Engineering Materials, 2004, 6(1-2), 74.
5 Hsu C Y, Yeh J W, Chen S K, et al. Metallurgical and Materials Tran-sactions A, 2004, 35(5), 1465.
6 Zhou Y J, Zhang Y, Wang Y L, et al. Applied Physics Letters, 2007, 90(18), 181904.
7 Chuang M H, Tsai M H, Wang W R, et al. Acta Materialia, 2011, 59(16), 6308.
8 Lee C P, Chen Y Y, Hsu C Y, et al. Journal of the Electrochemical Society, 2007, 154(8), C424.
9 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
10 Zeng X Q, Wang Q D. Foundry, 1998 (11), 39 (in Chinese).
曾小勤, 王渠东.铸造, 1998 (11), 39.
11 Liu Z, Wang Y, Wang Z G, et al. Chinese Journal of Materials Research, 2000, 14(5), 449 (in Chinese).
刘正, 王越, 王中光, 等.材料研究学报, 2000, 14(5), 449.
12 Cole G S, Sherman A M. Materials Characterization, 1995, 35(1), 3.
13 Hirsch J, Al-Samman T. Acta Materialia, 2013, 61(3), 818.
14 Polmear I J. Materials Transactions, JIM, 1996, 37(1), 12.
15 Yeh J W. JOM, 2013, 65(12), 1759.
16 Kumar A, Gupta M. Metals, 2016, 6(9), 199.
17 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
18 Tsai M H, Yeh J W. Materials Research Letters, 2014, 2(3), 107.
19 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials, 2008, 10(6), 534.
20 Yeh J W, Chang S Y, Hong Y D, et al. Materials Chemistry and Physics, 2007, 103(1), 41.
21 Chou H P, Chang Y S, Chen S K, et al. Materials Science and Enginee-ring: B, 2009, 163(3), 184.
22 Tsai M H. Entropy, 2013, 15(12), 5338.
23 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia, 2013, 61(13), 4887.
24 Paul A. Scripta Materialia, 2017, 135, 153.
25 Vaidya M, Trubel S, Murty B S, et al. Journal of Alloys and Compounds, 2016, 688, 994.
26 Tong C J, Chen Y L, Yeh J W, et al. Metallurgical and Materials Tran-sactions A, 2005, 36(4), 881.
27 Yeh J W, Chen Y L, Lin S J, et al. In: Conference Record of the Symposium on Advanced Structural Materials held at the Annual Congress of the Mexican-Academy-of-Materials-Science. Cancun, 2007, pp. 1.
28 Pickering E J, Jones N G. International Materials Reviews, 2016, 61(3), 183.
29 Yin K X. The research of lightweight high-entropy alloys. Masters Thesis, Shenyang Aerospace University, China, 2015 (in Chinese).
尹可心. 轻质高熵合金的研究.硕士学位论文,沈阳航空航天大学, 2015.
30 Gan Z H, Xu L M, Lu Z H, et al. In: Conference Record of the 2nd International Conference on Intelligent Materials, Applied Mechanics and Design Science. Guangzhou, 2013, pp. 103.
31 Otto F, Yang Y, Bei H, et al. Acta Materialia, 2013, 61(7), 2628.
32 Hu Z, Zhan Y, Zhang G, et al. Materials & Design, 2010, 31(3), 1599.
33 Jones N G, Izzo R, Mignanelli P M, et al. Intermetallics, 2016, 71, 43.
34 Zhai C Q, Zeng X Q, Din W J, et al.Materials for Mechanical Enginee-ring, 2001, 25(1), 6 (in Chinese).
翟春泉, 曾小勤, 丁文江, 等.机械工程材料, 2001, 25(1), 6.
35 Liu X T, Cui J Z. Materials Reports, 2005, 19(3), 47 (in Chinese).
刘晓涛, 崔建忠.材料导报, 2005, 19(3), 47.
36 Zhang Y, Zhou Y J. In: Conference Record of the 6th Pacific Rim International Conference on Advanced Materials and Processing. Cheju Island, 2007, pp. 1337.
37 Yang X, Zhang Y. Materials Chemistry and Physics, 2012, 132(2-3), 233.
38 Feng R, Gao M, Lee C, et al. Entropy, 2016, 18(9), 333.
39 Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109(10), 103505.
40 Guo H Z. Vacuum Science and Technology, 1984(4), 8 (in Chinese).
郭鸿震.真空科学与技术, 1984(4), 8.
41 Tseng K K, Yang Y C, Juan C C, et al. Science China Technological Sciences, 2018, 61(2), 184.
42 Huang X, Miao J, Luo A A. Journal of Materials Science, 2019, 54(3), 2271.
43 Maulik O, Kumar D, Kumar S, et al. Materials Research Express, 2018, 5(5), 052001.
44 Jang B Y, Kim J S, Ahn Y S. Solar Energy Materials and Solar Cells, 2011, 95(1), 101.
45 Shao L, Zhang T, Li L, et al. Journal of Materials Engineering and Performance, 2018, 27(12), 6648.
46 Yang X, Chen S Y, Cotton J D, et al.JOM, 2014, 66(10), 2009.
47 Li R, Gao J C, Fan K. In: Conference Record of the China-Materials-Research-Society Annual Meeting. Suzhou, 2010, pp. 265.
48 Hu G, Xing B, Huang F, et al. Materials Science and Technology, 2017, 33(3), 294.
49 Chen H Y, Savvides N. Journal of Crystal Growth, 2010, 312(16-17), 2328.
50 Suryanarayana C. Progress in Materials Science, 2001, 46(1-2), 1.
51 Youssef K M, Zaddach A J, Niu C, et al. Materials Research Letters, 2015, 3(2), 95.
52 Si T Z, Liu Q H, Xu W X, et al. The Chinese Journal of Process Engineering, 2019, 19(2), 393 (in Chinese).
斯庭智, 刘清华, 徐文祥, 等. 过程工程学报, 2019, 19(2), 393.
53 Maulik O, Kumar D, Kumar S, et al. Intermetallics, 2016, 77, 46.
54 Praveen S, Anupam A, Sirasani T, et al. Transactions of the Indian Institute of Metals, 2013, 66(4), 369.
55 Hammond V H, Atwater M A, Darling K A, et al. JOM, 2014, 66(10), 2021.
56 Quan F, Xiang H Z, Yang L, et al. The Chinese Journal of Process Engineering, 2019, 19(3), 447 (in Chinese).
权峰, 项厚政, 杨磊, 等.过程工程学报, 2019, 19(3), 447.
57 Huang C, Zhang Y, Vilar R, et al. Materials & Design, 2012, 41, 338.
58 Wang L M, Chen C C, Yeh J W, et al. Materials Chemistry and Physics, 2011, 126(3), 880.
59 Lai C H, Lin S J, Yeh J W, et al. Surface and Coatings Technology, 2006, 201(6), 3275.
60 Yao C Z, Zhang P, Liu M, et al. Electrochimica Acta, 2008, 53(28), 8359.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[9] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[10] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[11] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[12] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[13] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed