Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10036-10041    https://doi.org/10.11896/cldb.20010113
  无机非金属及其复合材料 |
TiO2/硅藻土/泥炭藓复合光催化调湿材料研究
胡明玉1, 周侠1, 李晔1, 谭煜秋2
1 南昌大学建筑工程学院,江西省超低能耗建筑重点实验室,南昌 330031
2 南昌大学建筑工程学院,南昌 330031
Study on TiO2/Diatomite/Sphagnum Composite Photocatalytic Humidity-controlling Materials
HU Mingyu1, ZHOU Xia1, LI Ye1, TAN Yuqiu2
1 Key Laboratory for Ultra-low Energy Buildings of Jiangxi Province, School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
2 School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 3697KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 优良的室内空气环境对保障居住者健康和舒适性具有重要意义。纳米TiO2和硅藻土等复合可产生协同效应,有望同时起到降解甲醛和调湿作用。通过小室试验研究了TiO2/硅藻土/泥炭藓复合光催化调湿材料对室内甲醛降解和温湿度调节的效果,结果表明该材料可以有效降解甲醛并调节温湿度。通过XRD、SEM、紫外-可见光吸光度及FTIR分析等手段,研究了TiO2/硅藻土/泥炭藓复合光催化调湿材料降解甲醛及调温调湿机制。研究结果表明:在自然光照下,TG-1∶7材料能将小室内甲醛浓度控制在0.06 mg/m3以内,甲醛去除率达89.1%;TG-1∶7材料能有效地将小室内相对湿度控制在58%RH左右,且能在一定程度上调节室内温度。硅藻土负载纳米TiO2可以改善半导体光生电子(e-)和光生空穴(h+)的分离,减小h+与e-重新组合的速率,且其禁带宽度也有所变窄。光催化调湿材料表面大量的硅羟基可产生更多的布朗斯台德酸性位点,能有效捕获h+并产生羟基自由基(·OH),增强TiO2的光催化活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡明玉
周侠
李晔
谭煜秋
关键词:  光催化调湿材料  温湿度调节  甲醛去除率  禁带宽度    
Abstract: Excellent indoor air environment is of great significance to ensure the health and comfort of residents. The composite of diatomite and nano-TiO2 may produce synergistic effect, which is expected to degrade formaldehyde and control humidity at the same time. The effect of TiO2/diatomite/sphagnum on the degradation of formaldehyde and the control of temperature and humidity was studied by chamber experiment. It shows that the photocatalytic humidity-controlling materials can effectively degrade formaldehyde and control temperature and humidity. Based on XRD, SEM, UV-visible light absorbance and FTIR analysis, the degradation mechanism of formaldehyde and the mechanism of temperature and humidity regulation of TiO2/diatomite/sphagnum composite were studied. The researches show that under natural light, TG-1∶7 material can control the formaldehyde concentration in the small chamber within 0.06 mg/m3, and the formaldehyde reduction rate reaches 89.1%; TG-1∶7 mate-rial can effectively control the relative humidity in the small chamber at 58% RH, and can adjust the indoor temperature to a certain extent. The combination of TiO2 and diatomite humidity-controlling material can improve the separation of photo-generated electrons (e-) and photo-generated holes (h+) in the semiconductor, delay the rate of recombination of h+ and e-, and narrow the band gap. A large number of silicon hydroxyl groups on the surface of the photocatalytic humidity-controlling materials can generate more Bronsted acid site, which can effectively capture h+ and generate hydroxyl radicals (·OH), which enhances the photocatalytic activity of TiO2.
Key words:  photocatalytic humidity-controlling materials    control of temperature and humidity    formaldehyde reduction rate    band gap
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TU50  
基金资助: 国家自然科学基金(51362021);江西省水利厅科技项目(KT201331)
通讯作者:  892660685@qq.com   
作者简介:  胡明玉,1958年生,江西宜春人,南昌大学教授,博士研究生导师,博士。主要从事生态环境材料、建筑节能材料和建筑结构材料研究。
引用本文:    
胡明玉, 周侠, 李晔, 谭煜秋. TiO2/硅藻土/泥炭藓复合光催化调湿材料研究[J]. 材料导报, 2021, 35(10): 10036-10041.
HU Mingyu, ZHOU Xia, LI Ye, TAN Yuqiu. Study on TiO2/Diatomite/Sphagnum Composite Photocatalytic Humidity-controlling Materials. Materials Reports, 2021, 35(10): 10036-10041.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010113  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10036
1 Zhu Yingxin.Building environment, China Building Industry Press, China, 2016(in Chinese).
朱颖心. 建筑环境学,中国建筑工业出版社, 2016.
2 Zheng J Y. Study on the heat-moisture migration process in diatomite-based humidity-controlling materials and its application in buildings. Ph.D. Thesis, Southeast University, China, 2015 (in Chinese).
郑佳宜. 硅藻土基调湿材料内热湿迁移过程及其在建筑中的应用研究. 博士学位论文,东南大学,2015.
3 Xie H H. Study on the thermodynamic properties of composite humidity control materials and the effects of thermal and humid environment. Ph.D. Thesis, Hunan University,China, 2018 (in Chinese).
谢华慧. 复合调湿材料热力学性能及热湿环境影响研究. 博士学位论文, 湖南大学,2018.
4 Chen Z. Study on the theory, preparation and properties of composite heat and humidity control materials. Ph.D. Thesis, Nanjing University, China, 2017 (in Chinese).
陈智. 复合调热调湿材料的理论、制备及性能研究. 博士学位论文, 南京大学, 2017.
5 Yang J. The effect of porous humidity-conditioning materials on the indoor hot and humid environment. Master's Thesis, Nanjing University,China, 2015 (in Chinese).
杨骏. 多孔调湿材料对室内热湿环境的影响. 硕士学位论文, 南京大学,2015.
6 Hu M Y, Fu C, Wei L L, et al. Materials Reports B: Research Papers, 2018, 32 (4),1230 (in Chinese).
胡明玉, 付超, 魏丽丽, 等. 材料导报:研究篇, 2018, 32(4),1230.
7 Sun Q, Li H, Zheng S, et al. Applied Surface Science, 2014, 311, 369.
8 Gao R Q, Hao D D, Geng Y. Journal of Composite Materials, 2016, 33 (1),142 (in Chinese).
高如琴, 郝丹迪, 耿悦. 复合材料学报,2016,33(1),142.
9 Li M Z, Liu Y Y, Zheng S L, et al. Non-Metallic Minerals, 2019,42 (3), 83 (in Chinese).
李铭哲, 刘阳钰, 郑水林, 等. 非金属矿,2019,42(3),83.
10 Zhang G, Sun Z, Duan Y, et al. Applied Surface Science,2017,412, 105.
11 Fu C. Preparation and properties of humidity-controlling building materials with water resistance. Master's Thesis, Nanchang University, China, 2018 (in Chinese).
付超. 耐水性建筑调湿材料的制备及性能研究. 硕士学位论文, 南昌大学, 2018.
12 GB/T 18883-2002, Indoor air quality standards, China Standard Press, China, 2003 (in Chinese).
GB/T 18883-2002, 室内空气质量标准, 中国标准出版社, 2003.
13 Liang W, Lv M, Yang X. Building and Environment, 2016, 101,110.
14 ASHRAE Standard 55-2013.Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditio-ning Engineers,2013.
15 Xiao G, Huang A, Su H, et al.Building and Environment, 2013, 65, 215.
16 Sun Z, Li C, Yao G, et al. Materials & Design, 2016, 94,403.
17 Zhu Qingwei, Zhang Yihe, et al. Chemical Engineering Journal, 2011, 61, 68
18 Khataee A R, Kasiri M B.Journal of Molecular Catalysis A: Chemical, 2010, 328(1-2), 8.
19 Zhang Y, Wang D, Zhang G. Chemical Engineering Journal, 2011, 173(1), 1.
20 Padmanabhan S K, Pal S, Haq E U, et al. Applied Catalysis A: General, 2014, 485,157.
21 Tang W, Qiu K, Zhang P, et al. Applied Surface Science, 2016, 362, 545.
22 Liu J, Zhang G. Physical Chemistry Chemical Physics, 2014, 16(18), 8178.
23 Xia Y. Preparation of diatomite-loaded phosphorus-doped titanium dioxide and its visible light photocatalytic activity. Ph.D. Thesis, Jilin University, China, 2014 (in Chinese).
夏悦. 硅藻土负载磷掺杂二氧化钛的制备及其可见光光催化活性研究.博士学位论文, 吉林大学,2014.
24 Kelly M T, Chun J K M, Bocarsly A B. The Journal of Physical Chemistry B, 1997, 101(14),2702.
25 Papp J, Soled S, Dwight K, et al. Chemistry of Materials, 1994, 6(4), 496.
[1] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[2] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[3] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[4] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[5] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[6] 聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
[7] 张兰芳,刘丽娜,曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 《材料导报》期刊社, 2017, 31(24): 15-19.
[8] 徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究*[J]. 《材料导报》期刊社, 2017, 31(14): 127-131.
[9] 余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
[10] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
[11] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[12] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[13] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[14] 段开瑞, 高英力, 周文娟, 裴甘鹏, 何倍. 动静态成型条件下预裂水稳碎石的力学特性[J]. 材料导报, 2020, 34(10): 10068-10075.
[15] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed