Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10042-10047    https://doi.org/10.11896/cldb.20040258
  无机非金属及其复合材料 |
没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响
魏致强1, 王远贵2, 齐孟1, 郑旭煦2, 袁小亚2
1 重庆交通大学土木工程学院,重庆 400074
2 重庆交通大学材料科学与工程学院,重庆 400074
The Synergistic Effect of Gallic Acid and Polycarboxylic Water-reducer on Aqueous GO Dispersion and the Enhanced Mechanical Properties of Cement Mortar Composites
WEI Zhiqiang1, WANG Yuangui2, QI Meng1, ZHENG Xuxu2,YUAN Xiaoya2
1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 4551KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 少量氧化石墨烯(GO)可大幅度提升水泥基材料的强度和韧性,但GO极易在高钙高碱水泥水化介质中聚沉,解决GO的分散稳定性问题是发挥其对水泥基材料增强功效的关键。本工作研究了没食子酸(GA)对GO在饱和氢氧化钙(CH)溶液中的助分散作用及其对GO掺配水泥砂浆力学性能的影响。相对于聚羧酸减水剂(PC)单独分散GO体系,额外加入一定比例的GA能进一步改善GO在CH溶液中的稳定分散能力;与PC分散GO的基准试件相比,少量的助分散剂GA可使水泥砂浆3 d的抗折、抗压强度分别提高17.3%和18%,28 d的抗折、抗压强度分别提高19.2%和21.4%。GA协同PC分散GO具有更好的促进水泥水化进程的作用,可使硬化水泥石的微观结构更加密实,水泥水化产物晶体更加有序规整生长。本研究以绿色廉价的GA作助分散剂,为GO增强水泥基材料提供了一种全新的思路且具有潜在的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏致强
王远贵
齐孟
郑旭煦
袁小亚
关键词:  氧化石墨烯  没食子酸  协同作用  微观结构    
Abstract: Asmall amount of graphene oxide (GO) could greatly improve the strength and toughness of cement composites. However, GO was easy to accumulate and precipitate in the environment of high calcium and alkali, so the stability of GO dispersion is the key to obtain high-perfor-mance cement-based materials. In this study, the effect of GA on the dispersion of GO in the saturated CH solution and mechanical properties of hardened cement composite were studied. Compared with PC dispersing system, the addition of a certain content of GA could further improve the dispersing ability of GO in CH solution and subsequently enhanced the flexural and compressive strength of cement mortar in 3 d by 17.3% and 18%, and in 28 d by 19.2% and 21.4%, respectively. The synergistic effect of GA and PC on the GO dispersion could obviously accelerate cement hydration process and uniform growth of the crystal of cement hydration products, which made the microstructure of hardened cement stone more compact. Herein,as a green and inexpensive reagent, GA was choosen as a co-dispersant to provide a new alternative to GO reinforcing cement-based materials and had many potential applications.
Key words:  graphene oxide    gallic acid    synergistic dispersion    microstructure
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TU528.572  
基金资助: 国家自然科学基金(51402030);重庆市科委科技项目基金(cstc2017jcyjBX0028);重庆市教育委员会科学技术研究项目(KJZD-K201800703)
通讯作者:  yuanxy@cqjtu.edu.cn   
作者简介:  袁小亚,博士、教授、重庆市高校中青年骨干教师、重庆交通大学优秀青年拔尖人才。2006年毕业于南开大学,获高分子化学与物理专业博士学位,同年7月进入重庆交通大学工作至今。主要从事纳米复合材料、建筑功能材料、高性能水泥混凝土的基础应用研究。近五年主持主研国家级、省部级等各类项目10余项;在国内外高水平杂志发表学术论文50多篇,其中SCI/EI检索收录30多篇。拥有国家发明专利6项、实用新型专利1项,曾获省部级奖励2项。
魏致强,重庆交通大学土木工程学院硕士研究生,师承袁小亚教授。从事纳米石墨烯水泥基复合材料的研究。
引用本文:    
魏致强, 王远贵, 齐孟, 郑旭煦, 袁小亚. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047.
WEI Zhiqiang, WANG Yuangui, QI Meng, ZHENG Xuxu,YUAN Xiaoya. The Synergistic Effect of Gallic Acid and Polycarboxylic Water-reducer on Aqueous GO Dispersion and the Enhanced Mechanical Properties of Cement Mortar Composites. Materials Reports, 2021, 35(10): 10042-10047.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040258  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10042
1 Wu Z W. High performance concrete, China Railway Publishing House,China, 1999(in Chinese).
吴中伟. 高性能混凝土, 中国铁道出版社, 1999.
2 Xu Y, Zeng J, Chen W, et al.Construction and Building Materials, 2018, 171, 291.
3 Peng H, Ge Y, Cai C S, et al. Construction and Building Materials, 2019, 194, 102.
4 Lu L, Ouyang D. Nanomaterials, 2017, 7(7), 187.
5 Birenboim M, Nadiv R, Alatawna A, et al.Science Direct Composites Part B, 2019, 161, 68.
6 Lu L, Zhao P, Lu Z. Construction and Building Materials, 2018, 189, 33.
7 Wang B M, Jiang R S, Zhao R Y. Concrete, 2016 (12), 68(in Chinese).
王宝民, 姜瑞双, 赵汝英.混凝土, 2016 (12), 68.
8 Zhao L, Guo X, Liu Y, et al. Carbon, 2018, 127, 255.
9 Yuan X Y, Zeng J J, Niu J W, et al. Journal of Functional Materials, 2018, 10(49), 10184 (in Chinese).
袁小亚, 曾俊杰, 牛佳伟, 等. 功能材料, 2018, 10(49), 10184.
10 Lv S H, Li Y, Zhao H R, et al. Fine Chemicals, 2016, 33(5), 589 (in Chinese).
吕生华, 李莹, 赵浩然, 等.精细化工, 2016, 33(5), 589.
11 Zhu L L. Controllable dispersion of graphene oxide and its impact on structure and properties of cement-based composites. Master's Thesis, Shaanxi University of Science and Technology,China, 2018 (in Chinese).
朱琳琳. 氧化石墨烯的可控分散性及其对水泥基复合材料结构与性能的影响. 硕士学位论文, 陕西科技大学, 2018.
12 Du H, Pan S D.Construction and Building Materials, 2018, 167, 403.
13 Lv S H, Zhu L L, Jia C M, et al. Materials Reports, 2017, 30(3), 125 (in Chinese).
吕生华, 朱琳琳, 贾春茂, 等.材料导报, 2017, 30(3), 125.
14 Wang M, Yao H, Wang R, et al. Construction and Building Materials, 2017, 150, 150.
15 Wang Q, Cui X,Wang J, et al.Construction and Building Materials, 2017, 138, 35.
16 Lu Z, Hanif A, Sun G, et al.Cement and Concrete Composites, 2018, 87, 220.
17 Paredes J I, Villar-Rodil S, Martinez-Alonso A, et al.Langmuir, 2008, 24(19), 10560.
18 Yuan X Y, Niu J W, Zeng J J, et al.Namomaterials, 2018, 8(8), 2079.
19 Terracciano A, Zhang J, Christodoulatos C, et al.Journal of Environmental Sciences, 2017, 57, 8.
20 Lv S H, Sun T, Ma Y J, et al.Concrete, 2013 (11), 1(in Chinese).
吕生华, 孙婷, 马宇娟, 等. 混凝土, 2013 (11), 1.
21 Lv S H, Jia C M, Zhu L L, et al. Fine Chemicals, 2017 (5), 577 (in Chinese).
吕生华, 贾春茂, 朱琳琳, 等.精细化工, 2017 (5), 577.
22 Yang Y L. Effect of graphene oxide on cement-based materials corrosion resistance performance. Master's Thesis, Chongqing Jiaotong University,China,2016(in Chinese).
杨雅玲. 氧化石墨烯对水泥基材料耐腐蚀性能的影响. 硕士学位论文, 重庆交通大学, 2016.
23 Hu M, Guo J, Li P, et al.Construction and Building Materials, 2018, 188, 470.
24 Cao M L, Zhang C, Wei J Q. Construction and Building Materials, 2013, 40, 14.
25 Chakraborty S, Sumit K, Roy A, et al.Industrial Engineering and Che-mistry Research, 2013, 52, 1252.
26 Pelisser F, Gleize P J P, Mikowski A, et al.Cement and Concrete Research, 2014, 48, 1.
27 Gare M, Pundir A.Cement and Concrete Compositions, 2014, 45, 227.
28 Wang Q, Li S Y, Wang J, et al.Journal of the Chinese Ceramic Society, 2018, 46(2), 163 (in Chinese).
王琴, 李时雨, 王健, 等.硅酸盐学报, 2018, 46(2), 163.
[1] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[2] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[3] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[4] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[5] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[6] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[7] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[8] 余嵘, 刘扬, 王增科, 田昭, 吕芙蓉. SAS/AMPS/IA共聚物中官能团对碳酸钙的协同阻垢作用[J]. 材料导报, 2021, 35(2): 2207-2212.
[9] 曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
[10] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[11] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[12] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[13] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[14] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[15] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed