Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2207-2212    https://doi.org/10.11896/cldb.19120066
  高分子与聚合物基复合材料 |
SAS/AMPS/IA共聚物中官能团对碳酸钙的协同阻垢作用
余嵘, 刘扬, 王增科, 田昭, 吕芙蓉
西安工程大学城市与规划工程学院水处理实验室,西安 710600
Synergistic Scale Inhibition of Calcium Carbonate by Functional Groups in SAS/AMPS/IA Copolymers
YU Rong, LIU Yang, WANG Zengke, TIAN Zhao, LYU Furong
Water Treatment Laboratory, College of Urban Planning and Engineering, Xi'an Polytechnic University, Xi'an 710600, China
下载:  全 文 ( PDF ) ( 3764KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以衣康酸(IA)、烯丙基磺酸钠(SAS)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)为原料,通过自由基溶液共聚合法,合成均聚物PIA、PSAS、PAMPS以及SAS/AMPS/IA三元共聚物。红外光谱、凝胶渗透色谱分析显示,三元共聚物中含有羧基、磺酸基、酰胺基官能团。静态阻垢法表明:均聚物、共混物及不同单体配比的SAS/AMPS/IA共聚物对CaCO3的阻垢效果有明显差异,共聚物中单体对阻垢效果影响程度的排序为:IA>AMPS>SAS。对CaCO3垢样进行SEM、XRD分析:加入PSAS、PAMPS的CaCO3晶体结晶颗粒减小,晶胞出现条状纹理;加入PIA、SAS/AMPS/IA的CaCO3晶体碎散,棱角消失,XRD图谱显示方解石特征峰的峰高显著降低,CaCO3晶体由方解石逐步转变为球霰石。晶体破坏程度的排序为:SAS/AMPS/IA>PIA>PAMPS>PSAS。对加入均聚物及共聚物SAS/AMPS/IA的CaCO3晶体表面进行Zeta电位测试,根据静电排斥能分析表明,羧基主要吸附于Ca2+表面,而磺酸基所带的负电荷增加了垢体表面的电势能,增大颗粒间静电斥力从而使CaCO3晶体分散稳定,并破坏方解石晶体的形成,两种官能团的协同作用使得SAS/AMPS/IA对碳酸钙晶体的破坏程度增大。而均聚物PIA、PSAS、PAMPS因不存在多官能团间的协同作用,它们的阻垢效果明显低于共聚物SAS/AMPS/IA的阻垢效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余嵘
刘扬
王增科
田昭
吕芙蓉
关键词:  聚合物  官能团  协同作用  碳酸钙    
Abstract: Homopolymer PIA, PSAS, PAMPS and SAS/AMPS/IA terpolymer were synthesized by free radical solution copolymerization using itaconic acid (IA), sodium allyl sulfonate (SAS), 2-acrylamide-2-methylpropionic acid (AMPS) as raw materials. The functional groups of carboxyl group, sulfonate group and amide group were found in the terpolymer by IR and gel permeation chromatography. The static scale inhibition me-thod showed that the scale inhibition effect of homopolymer, blend and SAS/AMPS/IA copolymer with different monomer ratios had significant differences on CaCO3, and the order of the influence of monomers in the copolymer on scale inhibition effect was IA>AMPS>SAS. The CaCO3 scale samples were analyzed by SEM and XRD. The CaCO3 crystals added with PSAS and PAMPS decreased, and the cells showed strip-like texture. The CaCO3 crystal added with PIA, SAS/AMPS/IA is fragmented, and the edges and corners disappear. The XRD pattern shows that the peak height of calcite is significantly reduced, and the CaCO3 crystal is gradually transformed from calcite to spherical aragonite. Order of degree of crystal destruction: SAS/AMPS/IA>PIA>PAMPS>PSAS. In the case of adding homopolymer and copolymer separately, the Zeta potential test was performed on the surface of the CaCO3 crystal. It can be seen from the analysis of electrostatic repulsion energy that carboxyl groups are mainly adsorbed on calcium ions, and the negative charge of sulfonic acid groups increases the potential energy of the scale surface, so the electrostatic repulsion between particles increases, which makes CaCO3 crystals dispersed stably, and at the same time, the formation of calcite crystals is destroyed. The synergistic effect of the two functional groups makes SAS/AMPS/IA more damage to calcium carbonate crystals. The homopolymer PIA, PSAS, and PAMPS have no synergistic effect among multifunctional groups, so their scale inhibition effect is significantly lo-wer than that of copolymers.
Key words:  polymers    functional groups    synergies    calcium carbonate
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TQ317  
基金资助: 陕西省工业科技攻关项目(2015GY101);陕西省教育厅科研计划项目(15JK1326)
通讯作者:  yurong365@163.com   
作者简介:  余嵘,女,西安工程大学副教授,主要从事水处理药剂的研制与开发、给水排水工程节能与优化等研究。
刘扬,男,硕士研究生,主要从事水处理药剂的研制与开发等研究。
引用本文:    
余嵘, 刘扬, 王增科, 田昭, 吕芙蓉. SAS/AMPS/IA共聚物中官能团对碳酸钙的协同阻垢作用[J]. 材料导报, 2021, 35(2): 2207-2212.
YU Rong, LIU Yang, WANG Zengke, TIAN Zhao, LYU Furong. Synergistic Scale Inhibition of Calcium Carbonate by Functional Groups in SAS/AMPS/IA Copolymers. Materials Reports, 2021, 35(2): 2207-2212.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120066  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2207
1 Liu L Y, Yuan M P, Yang C L, et al. Chinese Journal of Colloid & Polymer, 2015, 33(1), 46(in Chinese).
刘黎亚, 袁木平, 杨超龙, 等. 胶体与聚合物, 2015, 33(1), 46.
2 Wang W B, Chen G L, Wang Y Z.Applied Chemical Industry, 2018, 47(5), 1007(in Chinese).
王文波, 陈国力, 王雅珍. 应用化工, 2018, 47(5), 1007.
3 Shi W Y, Yan X H, Cang H, et al. Chemical Research and Application, 2017, 29(4), 453(in Chinese).
石文艳, 颜秀花, 仓辉, 等. 化学研究与应用, 2017, 29(4), 453.
4 Yang L, Yang W Z, Xu B, et al. The International Journal on the Science and Technology of Desalting and Water Purification, 2017, 416, 166.
5 Dong S Y, Zhang L L, Niu L, et al. Industrial Water Treatment, 2015, 35(1), 80(in Chinese).
董社英, 张黎黎, 钮丽, 等. 工业水处理, 2015, 35(1), 80.
6 Gao M L, Li H H, Zhang L H, et al. Speciality Petrochemicals, 2017, 34(1), 42(in Chinese).
高美玲, 李海花, 张利辉, 等. 精细石油化工, 2017, 34(1), 42
7 Meng L. Chemical Research and Application, 2018, 30(9), 1487(in Chinese).
孟丽. 化学研究与应用, 2018, 30(9), 1487.
8 Wu W, Sun H, Li A S, et al. Applied Chemical Industry, 2016, 45(9), 1611(in Chinese).
吴伟, 孙昊, 李爱山, 等. 应用化工, 2016, 45(9), 1611.
9 Xing W G, Feng Z F, Wei X F, et al. Industrial Water Treatment, 2012, 32(3), 48(in Chinese).
邢卫国, 冯泽峰, 魏晓飞, 等.工业水处理, 2012, 32(3), 48.
10 Zhang Y L, Zhao C X, Hu Z G, et al. Modern Chemical Industry, 2015,35(11), 61(in Chinese).
张玉玲, 赵彩霞, 胡志光, 等.现代化工, 2015,35(11), 61.
11 Zhang X B. Study on synthesis and application performance of barium (strontium) sulfate scale inhibitor. Master's Thesis, Southwest Petro-leum University, China, 2007(in Chinese).
张现斌. 硫酸钡(锶)阻垢剂的合成与应用性能研究. 硕士学位论文, 西南石油大学,2007.
12 Li J. Study on synthesis and performance of TPEG-based carboxylic acid-terminated phosphate-free polyether scale inhibitor. Master's Thesis,Southeast University, China, 2017(in Chinese).
李军. 基于TPEG的羧酸封端无磷聚醚阻垢剂的合成和性能研究. 硕士学位论文, 东南大学, 2017.
13 Chen J C, Li H, Luo M, et al. Technology of Water Treatment, 2017, 43(5), 76(in Chinese).
陈家驰, 李虎, 罗漫, 等.水处理技术, 2017, 43(5), 76.
14 Huang Q. Study on water quality stability model and purification. Master's Thesis, Dalian University of Technology, China, 2012(in Chinese).
黄琦. 水质稳定模型与净化研究. 硕士学位论文, 大连理工大学,2012.
15 Aleksandra Szczes'.Colloid & Polymer Science, 2016, 294(2), 409.
16 Peng X Y. Study on the relationship between molecular structure and application performance of polycarboxylic acid superplasticizer and its mechanism. Ph.D. Thesis, South China University of Technology, China, 2011(in Chinese).
彭雄义. 聚羧酸系减水剂的分子结构与应用性能关系及作用机理研究. 博士学位论文, 华南理工大学, 2011.
17 Watanabe K, Nishida I, Imai H.Colloid & Polymer Science, 2017, 29(9), 1491.
18 Zhang Z, Liang T, Liu J, et al. Journal of Applied Polymer Science, DOI: 10.1002/app. 46292.
19 Jiang C, An J J, Peng Z L, et al. Plastics, 2016, 45(4), 81(in Chinese).
姜超, 安晶晶, 彭中梁, 等. 塑料, 2016, 45(4), 81.
[1] 王立辉, 孙刚, 李丹, 夏惠芬, 李文卓, 许天寒, 张红玉, 张思琪. 新型抗盐聚合物溶液的性能及驱油效果评价[J]. 材料导报, 2021, 35(2): 2171-2177.
[2] 张硕. 利用纳米碳酸钙为模板制备二氧化硅空心微球[J]. 材料导报, 2020, 34(Z2): 91-94.
[3] 张净净, 李海朝. 磷酸活化鱼鳞活性生物炭的制备及表征[J]. 材料导报, 2020, 34(Z1): 116-119.
[4] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[5] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[6] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[7] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[8] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[9] 张耀君, 张叶, 韩智超, 贺攀阳, 陈浩. 地质聚合物原位转化沸石分子筛的研究进展[J]. 材料导报, 2020, 34(23): 23033-23041.
[10] 孙振龙, 张桢焱, 周容涛, 闫顺杰, 殷敬华. 两性离子聚合物材料杀菌/抗黏附功能自适应转化的设计策略[J]. 材料导报, 2020, 34(23): 23199-23204.
[11] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[12] 李庆斌, 廖明义. 正辛基硅钛聚合物的合成、表征及性能[J]. 材料导报, 2020, 34(22): 22167-22171.
[13] 李悦, 赵冰垠, 黄舟, 吴玉生, 金彩云, 蔡博群. 低泥土敏感性聚羧酸减水剂的制备[J]. 材料导报, 2020, 34(22): 22185-22189.
[14] 李小康, 朱思聪, 张仁刚, 彭顺金. 一种低能带隙结晶完整的D-A型共轭导电聚合物电化学沉积与表征[J]. 材料导报, 2020, 34(20): 20147-20151.
[15] 侯桂香, 谢建强, 姚少巍, 韩卿. 环氧化修饰碳纳米管对邻甲酚醛环氧树脂性能的影响[J]. 材料导报, 2020, 34(20): 20165-20170.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed