Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23033-23041    https://doi.org/10.11896/cldb.19080095
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
地质聚合物原位转化沸石分子筛的研究进展
张耀君, 张叶, 韩智超, 贺攀阳, 陈浩
西安建筑科技大学材料科学与工程学院,西安 710055
Research Progresses on In-situ Conversion of Geopolymer into Zeolite
ZHANG Yaojun, ZHANG Ye, HAN Zhichao, HE Panyang, CHEN Hao
College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 6829KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沸石分子筛是一种具有特定的-Si(Al)-O-Si-骨架结构的无机晶体材料,因其独特的空间网络结构而被广泛应用于吸附、分离、离子交换及催化等领域。然而,沸石分子筛的传统合成方法大多采用水热法,以化学试剂作为硅源及铝源,通过添加模板剂及助模板剂,在一定温度和酸碱条件下进行水热反应。该方法的优点在于制得的粉体具有晶粒发育完整、粒度小等优点,但存在原料昂贵以及粉体沸石分子筛二次成型等诸多弊端。地质聚合物是以天然矿物或铝硅酸盐固体废弃物为前驱体与碱性激发剂反应生成的一类绿色胶凝材料。将地质聚合物原位转化为块体沸石分子筛,不仅具有以生态友好的天然矿物及固体废弃物为原料、无需加入模板剂、成本低廉、反应条件缓和等优点,而且制得的块体沸石分子筛避免了传统粉体沸石分子筛在使用过程中的二次成型,开拓了块体沸石分子筛的制备新工艺及新方法。
在环境温度和压力下,将无定形的地质聚合物转化为沸石分子筛晶体在热力学上是难以实现的。但在一定的热养护或水热条件下,地质聚合物可原位转化为沸石分子筛。其原料组成、Si/Al物质的量比、Na2O/SiO2物质的量比、H2O/Na2O物质的量比、激发剂浓度、水热温度、水热时间等是影响沸石分子筛类型以及沸石分子筛微观结构的主要因素。地质聚合物原位转化沸石分子筛的机理可归结为金属阳离子结构导向机理、有机模板结构导向机理以及晶种结构导向机理。地质聚合物原位转化的沸石分子筛在海水淡化、醇水分离、吸附重金属离子以及气体吸附等领域展现出潜在的应用潜力。将无定形的地质聚合物转化为块体沸石分子筛是地质聚合物发展的新趋势,延伸了地质聚合物的产业链及使用价值。本文提出了目前地质聚合物原位转化沸石分子筛存在的问题以及解决对策,展望了该研究领域未来的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张耀君
张叶
韩智超
贺攀阳
陈浩
关键词:  地质聚合物  原位转化  沸石分子筛  碱性激发剂  水热反应    
Abstract: Zeolite is a type of inorganic crystal material with a specific-Si(Al)-O-Si-skeleton structure. It is widely used in the fields of adsorption, separation, ion exchange and catalysis due to its unique network structure. Generally, the zeolites are synthesized by hydrothermal method, in which the chemical reagents are used as aluminum source and silicon source, and the template and co-template are added to perform the hydrothermal reaction under a certain temperature and acid or base conditions. Although there are some advantages in traditional hydrothermal method such as the prepared powder with well-defined crystals, and small-sized particles, there are some disadvantages such as expensive raw materials and secondary pollution caused in the forming process. Geopolymer is a novel kind of green cementitious material which is formed by the reaction of natural mineral or aluminosilicate solid wastes with alkaline activator. The conversion of geopolymer into bulk zeolite in-situ not only eco-friendly utilization of natural mineral and aluminosilicate solid waste as raw materials, without the addition of template agents, low cost, and mild reaction conditions, but also the prepared bulk zeolites to simplify the forming process of using powder zeolite, and this is a new technique for synthesis of bulk zeolite.
Thermodynamically, it is difficult to convert amorphous geopolymers into zeolite under ambient temperature and pressure, but under the certain curing or hydrothermal conditions, the geopolymer can be converted into zeolite in-situ. Some main factors affect the types and microstructures of zeolites produced, such as raw material composition, the mole ratios of Si/Al, Na2O/SiO2 and H2O/Na2O, activator concentration, hydrothermal temperature and time. The mechanism about conversion of geopolymer into zeolite in-situ can be divided into the metal cation structural guidance, the organic template structural guidance and the seed structural guidance mechanisms. The bulk zeolites have some potential applications in the field of desalination, alcohol-water separation, adsorption of heavy metal ions, and gas adsorption. Therefore, it is a new approach to convert the geopolymer with amorphous structure into the zeolite with crystal structure. Thus, the production chain of geopolymers and application value are extended. In this paper, the problems and solutions for the conversion of geopolymers into bulk zeolites are put forward and the development in future is prospected.
Key words:  geopolymer    in-situ conversion    zeolite    alkali activator    hydrothermal reaction
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TQ172  
基金资助: 国家自然科学基金项目(21676209);陕西省重点研发计划项目(2019GY-137);西安建筑科技大学优秀博士论文培育基金 (6040318008)
通讯作者:  zhangyaojun@xauat.edu.cn   
作者简介:  张耀君,西安建筑科技大学材料科学与工程学院教授、博士研究生导师。陕西省纳米科技学会副理事长,中国硅酸盐学会化学胶凝材料专业委员会委员,中国硅酸盐学会固废专业委员会委员。长期从事纳米材料、固体废弃物资源化利用等相关领域的研究,并取得了大量系统性、创新性的研究成果,以第一作者或通讯作者在Chemical Engineering Journal、Applied Catalysis B: Environment、Journal of Hazardous Materials等SCI期刊发表论文80余篇,获国家发明专利40余项,出版了《纳米材料基础》(双语版)《化学基本原理》《化学简明教程》《精细有机合成反应与工艺》等学术专著。曾获陕西省优秀教师和国家级优秀教学成果等奖励,承担国家基础研究计划(973)、陕西省科技计划工业攻关等十余项项目。
引用本文:    
张耀君, 张叶, 韩智超, 贺攀阳, 陈浩. 地质聚合物原位转化沸石分子筛的研究进展[J]. 材料导报, 2020, 34(23): 23033-23041.
ZHANG Yaojun, ZHANG Ye, HAN Zhichao, HE Panyang, CHEN Hao. Research Progresses on In-situ Conversion of Geopolymer into Zeolite. Materials Reports, 2020, 34(23): 23033-23041.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080095  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23033
1 Davidovits J. Journal of Thermal Analysis,1989,35,429.
2 Davidovits J. Journal of Thermal Analysis and Calorimetry,1991,37(8),1633.
3 Van Jaarsveld J G S, Van Deventer J S J, Lorenzen L. Minerals Enginee-ring,1997,10(7),659.
4 Ma H W, Yang J, Ren Y F, et al. Earth Science Frontiers,2002,10,9(4),397(in Chinese).
马鸿文,杨静,任玉峰,等.地学前缘,2002,9(4),397.
5 Buchwald A, Schulz M. Cement and Concrete Research,2005,35(5),968.
6 Garcia-Lodeiro I, Palomo A, Fernandez-Jimenez A. Handbook of alkali-activated cements, mortars and concretes, Woodhead Publishing,Spain,2015.
7 Hu W, Nie Q K, Huang B S, et al. Journal of Cleaner Production,2018,186,799.
8 Nie Q K, Hu W, Huang B S, et al. Journal of Hazardous Materials,2019,369,503.
9 Sun Z Q, Vollpracht A. Cement and Concrete Research,2018,103,110.
10 Peng J, Yan Z B. China Non-Metallic Minerals Industry,2014(1),16(in Chinese).
彭佳,颜子博.中国非金属矿工业导刊,2014(1),16.
11 Wen L Q, Song Z H. Materials Review,2005,19(2),67(in Chinese).
翁履谦,宋中华.材料导报,2005,19(2),67.
12 Zhou X T, Xu Z F, Chen J, et al. Bulletin of the Chinese Ceramic Society,2014,33(11),2935(in Chinese).
邹小童,徐子芳,陈娟,等.硅酸盐通报,2014,33(11),2935.
13 Glukhovsky V D. Soil silicates: their properties, technology and manufacturing and fields of application. Ph. D. Thesis, Civil Engineering Institute, Ukraine,1965.
14 Duxson P, Fernandez-Jimenez A, Provis J L, et al. Journal of Materials Science,2007,42(9),2917.
15 Zhang Y J, Yang M Y, Kang L, et al. Journal of Inorganic Materials,2016,31(3),225(in Chinese).
张耀君,杨梦阳,康乐,等.无机材料学报,2016,31(3),225.
16 Zhang P, Zheng Y X, Wang K J, et al. Composites Part B,2018,152,79.
17 Hu W, Nie Q K, Huang B S, et al. Construction and Building Materials,2018,191,1120.
18 Siyal A A, Shamsuddina M R, Khan M I, et al. Journal of Environmental Management,2018,224,327.
19 Duxson P, Provis J L, Lukey G C, et al. Cement and Concrete Research,2007,37,1590.
20 De Silva P, Sagoe-Crenstil K. Cement and Concrete Research,2008,38(6),870.
21 Provis J L, Lukey G C, Deventer J S J. Chemistry of Materials,2005,17(12),3075.
22 Palomo A, Blanco-Varela M T, Granizo M L, et al. Cement and Concrete Research,1999,29(7),997.
23 Fletcher R A, MacKenzie K J D, Nicholson C L, et al. Journal of European Ceramic Society,2005,25(9),1471.
24 Bell J L, Sarinand P, Kriven W M. Microscopy and Microanalysis,2006,12(S02),738.
25 Zhang Y S, Sun W, Jia Y T, et al. Journal of Wuhan University of Technology,2005,11(27),27(in Chinese).
张云升,孙伟,贾艳涛,等.武汉理工大学学报,2005,11(27),27.
26 Brew D R M, Mackenzie K J D. Journal of Materials Science,2007,42(11),3990.
27 Sturma P, Glutha G J G, Simon S, et al. Thermochimica Acta,2016,635,41.
28 Rozek P, Krol M, Mozgawa W. Journal of Cleaner Production,2019,230,557.
29 Xu H, Van Deventer J S J. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2003,216(1-3),27.
30 Xu H, Van Deventer J S J. Minerals Engineering,2002,15(12),1131.
31 Fernandez-Jimenez A, Palomo A, Criado M. Cement and Concrete Research,2005,35(6),1204.
32 Fernandez-Jimenez A, Palomo A, Sobrados I, et al. Microporous and Mesoporous Materials,2006,91(1-3),111.
33 Duan J X, Li J, Lu Z Y. Journal of Porous Materials,2015,22(6),1519.
34 Sanz J, Madani A, Serratosa J M, et al. Journal of the American Ceramic Society,1988,71(10),418.
35 Rashad A M. Construction and Building Materials,2013,41,751.
36 Mao J, Wang Y P, Liu J, et al. Journal of the Chinese Ceramic Society,2013,41(9),1244(in Chinese).
冒进,王艺频,刘菁,等.硅酸盐学报,2013,41(9),1244.
37 Zhang J, Mao J, Wang Y P, et al. Journal of Guangxi University(Natural Science Edition),2013,38(6),1313(in Chinese).
张锦,冒进,王艺频,等.广西大学学报(自然科学版),2013,38(6),1313.
38 Zhang J, He Y, Wang Y P, et al. Materials Letters,2014,116(116),167.
39 He Y, Cui X M, Li X D, et al. Journal of Membrane Science,2013,447,66.
40 Ge Y Y, Tang Q, Cui X M, et al. Materials Letters,2014,135,15.
41 Wang Y P. Preparation of low Si/Al ratio of zeolite using metakalin geopolymer-gels conversation method. Master’s Thesis, Guangxi University, China,2015(in Chinese).
王艺频.偏高岭土地质聚合物凝胶转化法制备低铝硅比沸石分子筛分子筛.硕士学位论文,广西大学,2015.
42 Xu M X, Wang Y P, Tang Q, et al. Journal of Guangxi University(Natural Science Edition),2016,41(5),1610(in Chinese).
徐梦雪,王艺频,唐青,等.广西大学学报(自然科学版),2016,41(5),1610.
43 Tang Q, He Y, Wang Y P, et al. Applied Clay Science,2016,129,102.
44 Minellia M, Papa E, Medri V, et al. Chemical Engineering Journal,2018,341,505.
45 Papa E, Medri V, Amari S, et al. Journal of Cleaner Production,2018,171,76.
46 Tang Q, Ge Y Y, Wang K T, et al. Materials Letters,2015,161,558.
47 Wang Y H, Chen J Y, Lei X R, et al. Acta Petrologica Et Mineralogical,2016,35(6),1072(in Chinese).
王源慧,陈洁瑜,雷新荣,等.岩土矿物学杂志,2016,35(6),1072.
48 Wang H Q, Yan C J, Li D, et al. Microporous and Mesoporous Materials,2018,261,164.
49 Krol M, Mozgawa W. Microporous and Mesoporous Materials,2019,282,109.
50 Krol M, Roek P, Chlebda D, et al. Solid State Sciences,2019,94,114.
51 Pan F, Lu X C, Wang Y, et al. Materials Letters,2014,115,5.
52 Khatamian M, Irani M. Journal of the Iranian Chemical Society,2009,6(1),187.
53 Liu Y, Yang X H, Yan C J, et al. Materials Letters,2019,248,28.
54 Yao Z T, Xia M S, Sarker P K, et al. Fuel,2014,120,74.
55 Sun S J, Liu X M. Fly Ash Comprehensive Utilization,2015(3),45(in Chinese).
孙淑静,刘学敏.粉煤灰综合利用,2015(3),45.
56 Takeda H, Hashimoto S, Iwata T, et al. Journal of Material Cycles and Waste Management,2012,14(4),403.
57 Qiu X M, Liu Y D, Li D, et al. Journal Porous Materials,2015,22,291.
58 Qiu X M, Liu Y D, Yan C J, et al. Acta Petrologica Et Mineralogica,2018,37(4),669(in Chinese).
仇秀梅,刘亚东,严春杰,等.岩土矿物学杂志,2018,37(4),669.
59 Liu Y, Yan C J, Qiu X M, et al. Journal of the Taiwan Institute of Che-mical Engineers,2016,59,433.
60 Qiu X M, Liu Y D, Yan C J, et al. Journal of Synthetic Crystals,2018(2),411(in Chinese).
仇秀梅,刘亚东,严春杰,等.人工晶体学报,2018(2),411.
61 Lee N K, Khalid H R, Lee H K. Microporous and Mesoporous Materials,2016,229,22.
62 Zhang Z H, Li L F, He D N, et al. Materials Letters,2016,178,151.
63 Zhang Z H, Provis J L, Reid A, et al. Cement and Concrete Composites,2015,62,97.
64 De Rossi A, Simao L, Ribeiro M J, et al. Materials Letters,2019,236,644.
65 Wang J, Wang J X, Zhang Q, et al. Nuclear Engineering and Design,2016,300,67.
66 Zhang Y J, Chen H, He P Y, et al. Materials Letters,2019,236,538.
67 Chen H, Zhang Y J, He P Y, et al. Energy,2019,179,422.
68 Li C J, Zhang Y J, Chen H, et al. Materials Letters,2020,260,126940.
69 Van Deventer J S J, Provis J L, Duxson P, et al. Journal of Hazardous Materials,2007,139(3),506.
70 Krol M, Minkiewicz J, Mozgawa W. Journal of Molecular Structure,2016,1126,200.
71 Xu R R, Pang W Q, Tu K G. Zeolite molecular sieves structure and synthesis, Jilin University Press, China,1987(in Chinese).
徐如人,庞文琴,屠昆岗.沸石分子筛的结构与合成,吉林大学出版社,1987.
72 Li J Y, Yu J H, Xu R R. Chinese Journal of Inorganic Chemistry,2004,20(1),2(in Chinese).
李激扬,于吉红,徐如人.无机化学学报,2004,20(1),2.
73 Ress C A, Provis J L, Lukey G C, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,318(1-3),97.
74 Liu Z H, Tang Q, Li C M, et al. International Journal of Applied Ceramic Technology,2017,14,982.
75 Cho C H, Oh K Y, Kim S K, et al. Journal of Membrane Science,2011,371(1-2),226.
76 Liu Y, Yan C J, Zhang Z H, et al. Fuel,2016,185,181.
77 Qiu X M. Research on immobilization of heavy metal and in-situ translation into zeolite through using fly ash based geopolymer. Ph.D. Thesis,China University of Geosciences, China,2015(in Chinese).
仇秀梅.粉煤灰基地质聚合物固封重金属及原位转化分子筛的研究.博士学位论文,中国地质大学,2015.
[1] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[2] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[3] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[4] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[5] 张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
[6] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed