Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 50-56    https://doi.org/10.11896/j.issn.1005-023X.2017.09.006
  专题栏目:二维材料 |
一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*
张耀君, 余淼, 张力, 张懿鑫, 康乐
西安建筑科技大学材料与矿资学院,西安 710055
Synthesis of a Novel Graphene Fly-ash-based Geopolymer Composite and Its Photocatalytic Application
ZHANG Yaojun, YU Miao, ZHANG Li, ZHANG Yixin, KANG Le
College of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710055
下载:  全 文 ( PDF ) ( 2326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二维石墨烯优异的理论电子迁移率,为石墨烯与粉煤灰地质聚合物的复合以及半导体光生电子的传输提供了理论依据。本工作首次报道了石墨烯-粉煤灰基地质聚合物复合光催化材料的制备,并将其应用于光催化染料降解的探索性研究。XRD、FESEM、XPS及FT-IR结果表明:粉煤灰颗粒与碱性激发剂反应,生成Si-O-Si(Al)无定形网络结构的石墨烯-粉煤灰基地质聚合物复合材料,Co2+掺杂的Fe2O3以无定形态均匀地分布于石墨烯-粉煤灰基地质聚合物复合材料表面。Co2+-10Fe2O3-GAFG复合材料对碱性品蓝染料展现出最高的光催化降解活性,归因于Co2+掺杂提供给Fe2O3半导体的施主能级,石墨烯对Fe2O3光生电子的快速传输,以及羟基自由基(·OH)对染料分子氧化降解的协同作用。该光催化降解反应符合二级反应动力学。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张耀君
余淼
张力
张懿鑫
康乐
关键词:  石墨烯-粉煤灰地质聚合物复合材料  光催化  羟基自由基  染料降解    
Abstract: Two-dimensional graphene with excellent theoretical electron mobility provides a theoretical foundation for the composite of graphene and fly ash geopolymer as well as the photo-generated electron transmission of semiconductor. The graphene fly-ash-based geopolymer composite was firstly synthesized and applied as photocatalyst for degradation of dye. XRD, FESEM, XPS and FT-IR results showed that the spherical fly ash particles reacted with alkali-activated agent to generate the graphene alkali-activated fly-ash-based geopolymer (GAFG) which was composed of Si-O-Si (Al) amorphous net structure, and the lamellate graphene was wrapped inside. The fact that the Co-10Fe2O3-GAFG sample displayed the highest photocatalytic activity for degradation of basic blue dye was ascribed to the synergistic effect of: the donor level of Fe2O3 semiconductor induced by Co2+ doping, the rapid photoelectron transfer from Fe2O3 semiconductor to graphene, and the oxidative degradation of dye molecules by hydroxyl radicals. The photocatalytic degradation reaction coincides with the second-order reaction kinetics.
Key words:  graphene fly-ash-based geopolymer composite    photocatalysis    hydroxyl radical    dye degradation
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB33  
基金资助: *国家自然科学基金(21676209; 21346011); 陕西省教育厅重点科研项目(16JS055)
作者简介:  张耀君:男,1959年生,博士,教授,博士研究生导师,主要从事固体废弃物资源化利用、新能源材料和纳米材料等研究 E-mail:zhangyaojun@xauat.edu.cn
引用本文:    
张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
ZHANG Yaojun, YU Miao, ZHANG Li, ZHANG Yixin, KANG Le. Synthesis of a Novel Graphene Fly-ash-based Geopolymer Composite and Its Photocatalytic Application. Materials Reports, 2017, 31(9): 50-56.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.006  或          http://www.mater-rep.com/CN/Y2017/V31/I9/50
[1] 付鹏艳. “十三五”粉煤灰怎么走[J]. 商品混凝土,2016(6):31.
[2] Cao J, Fang Y, Fan R D, et al.Research progress of extracting alumina and silica from sly ash[J]. Inorg Chem Ind, 2015,47(8):10 (in Chinese).曹君,方莹,范仁东,等. 粉煤灰提取氧化铝联产二氧化硅的研究进展[J].无机盐工业,2015,47(8):10.
[3] Sun S J, Liu X M.Recycling utilization of fly ash in china: Situations, problems and countermeasures[J]. Fly Ash Compr Utiliz,2015(3):45.孙淑静, 刘学敏. 我国粉煤灰资源化利用现状、问题及对策分析[J]. 粉煤灰综合利用,2015(3):45.
[4] Gunasekara C, Law D W, Setunge S, et al.Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers[J].Constr Build Mater,2015,95:592.
[5] Ryu G S, Lee Y B, Koh K T, et al.The mechanical properties of fly ash based geopolymer concrete with alkaline activators[J]. Constr Build Mater,2013,47:409.
[6] Bakharev T.Geopolymeric materials prepared using class F fly ash and elevated temperature curing[J]. Cem Concr Res,2005,35:1224.
[7] Law D W, Adam A A, Molyneaux T K, et al.Long term durability properties of class F fly ash geopolymer concrete[J]. Mater Struct,2015,48:721.
[8] Chindaprasirt P, Rattanasak U, Taebuanhuad S.Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer[J]. Mater Struct,2013,46:375.
[9] Temuujin J, Minjigmaa A, Lee M, et al.Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions[J]. Cem Concr Compos,2011,33:1086.
[10] Chindaprasirt P, Chalee W.Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site[J]. Constr Build Mater,2014,63:303.
[11] Roy D M.Alkali activated cement opportunities and challenges[J]. Cem Concr Res, 1999, 29:249.
[12] Rashad A M.Alkali-activated metakaolin: A short guide for civil engineer—An overview[J]. Constr Build Mater,2013,41:751.
[13] Zhang Y J, Zhang M Y, Kang L, et al.Research progresses of new type alkali-activated cementitious material catalyst[J]. J Inorg Mater,2016, 31(3):225.张耀君, 杨梦阳, 康乐, 等. 一类新型碱激发胶凝材料催化剂的研究进展[J]. 无机材料学报,2016,31(3):225.
[14] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
[15] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of grapheme[J].Rev Mod Phys,2009,81:109.
[16] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282.
[17] Lee C G, Wei X D, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008, 321(5887):385.
[18] Novoselov K S, Jiang Z, Zhang Y, et al.Room-temperature quantum hall effect in graphene[J]. Science,2007,315(5817):1379.
[19] Wang Y, Huang Y, Song Y, et al.Room-temperature ferromagne-tism of graphene[J]. Nano Lett,2009,9(1):220.
[20] Ivanovskii A L.Graphene-based and graphene-like materials[J]. Russ Chem Rev,2012,81(7):571.
[21] Vasilios G, Michal O, Athanasios B B, et al.Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications[J]. Chem Rev,2012,112:6156.
[22] Fujii H, Ohtaki M, Eguchi K, et al.Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix[J]. J Mol Catal A: Chem,1998,129(1):61.
[23] Wieczorek-Ciurowa K, Kozak A J.The thermal decomposition of Fe(NO3)3·9H2O[J].J Therm Anal Calorim,1999,58:647.
[24] 王华,张强,宋存义. 莫来石在粉煤灰碱性溶液中的反应行为[J]. 粉煤灰综合利用,2001(5):24.
[25] Zhang Y J, Zhao Y L, Li H H, et al.Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag[J]. J Mater Sci,2008,43:7141.
[26] Guivar J A R, et al. Vacancy ordered α-Fe2O3 nanoparticles functionalized with nanohydr-oxyapatite: XRD, FTIR, TEM, XPS and Mössbauer studies[J]. Appl Surf Sci,2016,389:721.
[27] Descostes M, Mercier F, Thromat N, et al.Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium[J]. Appl Surf Sci,2000,165:288.
[28] Jing H, Song X, Ren S, et al.ZIF-67 derived nanostructures of Co/CoO and Co@N-doped graphitic carbon as counter electrode for highly efficient dye-sensitized solar cells[J]. Electrochim Acta,2016,213:252.
[29] Venkatesan M, Fitzgerald C B, et al.Anisotropic ferromagnetism in substituted zinc oxide[J]. Phys Rev Lett,2004,93:177206.
[30] Garbowski E, Guenin M, Marion M C, et al.Catalytic properties and surface states of cobalt-containing oxidation catalysts[J]. Appl Catal,1990, 64:209.
[31] Palomo A, Grutzeck M W, Blanco M T.Alkali-activated fly ashes—A cement for the future[J]. Cem Concr Res,1999,29:1323.
[32] Timakul P, Rattanaprasit W, Aungkavattana P.Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition[J]. Ceram Int,2016,42:6288.
[33] Komnitsas K A.Potential of geopolymer technology towards green buildings and sustainable cities[J]. Procedia Eng,2011,21:1023.
[34] Ho Y S, Mckay G.Pseudo-second order model for sorption processes[J].Proc Biochem,1999,34:451.
[35] Damme H V, Hall W K.Photoassisted decomposition of water at the gas-solid interface on titanium dioxide[J].J Am Chem Soc,1979,101:4373.
[1] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[2] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[3] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[4] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[5] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[6] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[7] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[8] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
[9] 孙宇杰, 刘玉芹, 徐芬, 孙立贤. 尖晶石型金属氧化物的制备及光催化有机污染物降解:综述[J]. 材料导报, 2020, 34(15): 15021-15032.
[10] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[11] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[12] 于晓晨, 党快乐, 宋泽钰, 李华健, 曹欣, 吴俊, 樊继斌, 段理, 赵鹏. 一步溶剂热法合成高催化性能的Gd3+掺杂氧化锌纳米晶体[J]. 材料导报, 2020, 34(14): 14003-14008.
[13] 郑会勤. 双核钴化合物分子催化剂光催化分解水析氢性能及机理研究[J]. 材料导报, 2020, 34(12): 12163-12168.
[14] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[15] 杨威, 郭盛, 陈金毅. 累托石基复合光催化材料研究进展[J]. 材料导报, 2020, 34(11): 11022-11028.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed