Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2757-2762    https://doi.org/10.11896/j.issn.1005-023X.2018.16.010
  无机非金属及其复合材料 |
粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度
王顺风1, 马雪1, 张祖华2, 王爱国3, 李亚林4
1 西南科技大学材料科学与工程学院,绵阳 621010;
2 湖南大学土木工程学院,长沙 410012;
3 安徽建筑大学先进建筑材料安徽省重点实验室,合肥 230022;
4 四川天府防火材料有限公司,成都 610031
Pore Structure and Compressive Strength of Fly Ash-Metakaolin Based Geopolymer
WANG Shunfeng1, MA Xue1, ZHANG Zuhua2, WANG Aiguo3, LI Yalin4
1 College of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010;
2 College of Civil Engineering, Hunan University, Changsha 410012;
3 Anhui Key Laboratory of Advance Building Materials, Anhui University of Architecture, Hefei 230022;
4 Sichuan Tianfu Fire Material Co., Ltd., Chengdu 610031
下载:  全 文 ( PDF ) ( 2968KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地质聚合物因其优异的力学性能、化学稳定性、耐高温等性能,在建筑、耐火、有毒有害离子固化等领域备受关注。本研究通过压汞法(MIP)、FT-IR、SEM测试分析了粉煤灰-偏高岭土基地质聚合物的孔径分布、凝胶结构及断裂方式,探讨了偏高岭土掺量对其结构与性能的影响。结果表明:地质聚合物的孔径分布随水灰比的调整存在大范围的变化,最可几孔径由几个纳米到100 nm。当水灰比固定时,偏高岭土掺量由25%(质量分数)增加至60%(质量分数),地质聚合物中气孔均以凝胶孔为主,最可几孔径由40 nm减小至26 nm,总气孔率无显著变化,但有害孔的孔隙率明显由3.6%降至0.09%。偏高岭土掺量的增加,提高了凝胶相多元环结构中[AlO4]的数目,使材料呈均匀化、致密化结构,尤其是改善了未反应粉煤灰颗粒与凝胶相之间的界面结合。偏高岭土掺量为60%时,裂纹在粉煤灰颗粒堆积气孔或薄弱界面周围的快速扩展得到有效控制,抗压强度显著提高,7 d龄期时强度达到75.5 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王顺风
马雪
张祖华
王爱国
李亚林
关键词:  地质聚合物  偏高岭土  孔径分布  凝胶结构  裂纹扩展    
Abstract: The great advantages of geopolymers, such as excellent mechanical property, chemical stability, high temperature resistance properties and so on, have been attracted much attention in recent years. They are gradually deemed to be potentially revolutionary materials in the field of building, fire resistance and stabilization radioactive and toxic wastes. This study was aimed to investigate the structure and compressive strength of geopolymer with high content of metakaolin and the metakaolin dosage affecting them. The pore structure (including pore diameter distribution and porosity), reaction products structure and fracture behavior of geopolymers, were characterized respectively by MIP, FT-IR and SEM. The pore diameter distribution was influenced obviously by the water to binder mass ratio, the diameter of the most probable pore was dispersedly distributed in the region of several nm to one hundred nm. As water/binder ratio was constant and metakaolin dosage increases from 25%(mass fraction) to 60%(mass fraction), abundant gel pores were detected in all samples, whereas the diameter of the most probable pore was diminished from 40 nm to 26 nm. In addition, although the total porosity was not much different, the porosity of harmful pore decreased from 3.6% to 0.09%. An increase in the metakaolin content promoted the number of [AlO4] in a ring of aluminasilicate gel, which resulted in the structure more denser and more homogenous, especially improved the interface bonding performance between unreacted fly ash particles and the gels. The substitution of 60% fly ash by metakaolin, the crack propagation around the pore or weak interface of fly ash particles was effectively controlled, thus significantly improving the compressive strength and at 75.5 MPa after 7 d curing.
Key words:  geopolymer    metakaolin    pore distribution    gel structure    crack growth
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TB321  
基金资助: 国家自然科学基金(11405140;51778003);四川省教育厅项目(17ZA0395);龙山人才计划(17LZX603)
通讯作者:  马雪:通信作者,女,副教授,硕士研究生导师,主要研究方向为核废物处置材料,绿色建筑材料 E-mail:ma_xue369@163.com   
作者简介:  王顺风:男,1991年生,硕士研究生,主要研究方向为碱激发胶凝材料 E-mail:18381669981@163.com
引用本文:    
王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
WANG Shunfeng, MA Xue, ZHANG Zuhua, WANG Aiguo, LI Yalin. Pore Structure and Compressive Strength of Fly Ash-Metakaolin Based Geopolymer. Materials Reports, 2018, 32(16): 2757-2762.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.010  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2757
1 Jannie S J V D, John L P, Peter D. Technical and commercial progress in the adoption of geopolymer cement[J]. Minerals Enginee-ring,2012,29(3):89.
2 Adam N. The confused world of sulfate attack on concrete[J]. Cement and Concrete Research,2004,34(8):1275.
3 Tom G, John D, Russell G, et al. EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport[C]//27th Biennial National Conference of the Concrete Institute of Australia in Conjunction With the 69th RILEM Week. Melbourne, Australia,2015.
4 Luna Y G, Fernández P C, Vale J. Stabilization/solidification of a municipal solid waste incineration residue using fly-ash-based geopolymers [J]. Journal of Hazardous Materials,2011,185(1):373.
5 Pereira C F, Luna Y, Querol X, et al. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers [J]. Fuel,2009,88(7):1185.
6 Cozzi A D, Bannochie C J, Burket P R, et al. Immobilization of radioactive waste in fly ash based geoploymers [C]//2011 World of Coal Ash (WOSA) Conference. Denver, USA,2011.
7 Fernández-Jimenez A, Macphee D E, Lachowski E E, et al. Immobilization of cesium in alkaline activated fly ash matrix [J]. Journal of Nuclear Materials,2005,346(2-3):185.
8 Aly Z, Vance E R, Perera D S, et al. Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al=1.5—4 [J]. Journal of Nuclear Materials,2008,378(2):172.
9 Künzel C, Vandeperre L, Boccaccini A R, et al. Geopolymers for the encapsulation of solid nuclear waste [C]//DIAMOND’ 10 Conference, Decommissioning, Immobilization and Management of Nuclear Waste for Disposal. Manchester, UK,2010
10 Shi C J, Fernández-Jiménez A. Stabilization/solidification of hazar-dous and radioactive wastes with alkali-actived cement [J]. Journal of Hazardous Materials,2006,137(3):1656.
11 Künzel C, Cisneros J F, Neville T P, et al. Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin[J]. Journal of Nuclear Materials,2015,466:94.
12 Duan P, Yan C, Zhou W. Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack[J]. Ceramics International,2016,42(2):3504.
13 Duan P, Yan C J, Zhou W, et al. An investigation of the microstructure and durability of a fluidized bed fly ash-metakaolin geopolymer after heat and acid exposure[J]. Materials and Design,2015,74:125.
14 Zhang Z H, Wang H, Zhu Y C, et al. Using fly ash to partially substitute metakaolin in geopolymer synthesis[J]. Applied Clay Science,2014,88-89(3):194.
15 Alvarez-Ayuso E, Querol X, Plana F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes[J]. Journal of Hazardous Materials,2008,154(1-3):175.
16 Li Y L, Wang S F, Ma X, et al. Effect of water glass on compressive strength and pore structure of geopolymers [J]. Nonmetallic mines,2017,40(2):46(in Chinese).
李亚林,王顺风,马雪,等.水玻璃对地质聚合物抗压强度及孔结构的影响[J].非金属矿,2017,40(2):46.
17 吴中伟,廉惠珍.高性能混凝土[M].北京:中国铁道出版社,1999.
18 Ioannis K O, Maria P, Nikolaos T, et al. Clays from Neogene Achlada lignite deposits in Florina basin (Western Macedonia, N. Greece): A prospective resource for the ceramics industry[J]. Applied Clay Science,2015,103:1.
19 杨南如.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,2012.
20 Nuran B, Grant D B, Sammy M N, et al. New synthesis method for the production of coal fly ash-based foamed geopolymer[J]. Construction and Building Materials,2015,75:189.
21 Mahir A, Çigdem H, ZürriyeY, et al. The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite [J]. Microporous and Mesoporous Materials,2005,86(1-3):176.
22 Adrian A, Rodrigo F, Rafael Q, et al. Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration[J]. Applied Clay Science,2015,108:94.
23 Susan A B,John L P, Volker R, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends[J]. Cement and Concrete Composites,2011,33:46.
24 Fernández-Jiménez A, Palomo A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure[J]. Microporous and Mesoporous Materials,2005,86:207.
25 Mozgawa W. The relation between structure and vibrational spectra of natural zeolites[J]. Molecular Structure,2001,596:129.
[1] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[2] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[3] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[4] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[5] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[6] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[7] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[8] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[9] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[10] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[11] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[12] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[13] 张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
[14] 底月兰, 王海斗, 董丽虹, 邢志国, 王晓丽. 扩展有限元法在裂纹扩展问题中的应用*[J]. 《材料导报》期刊社, 2017, 31(3): 70-74.
[15] 冷建成,田洪旭,周国强,吴泽民. 基于磁记忆方法的抽油杆裂纹扩展监测[J]. 《材料导报》期刊社, 2017, 31(24): 178-190.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed