Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2412-2417    https://doi.org/10.11896/j.issn.1005-023X.2018.14.016
  无机非金属及其复合材料 |
塑钢纤维轻骨料混凝土细观破坏过程的数值模拟
李革, 徐泽华, 牛建刚
内蒙古科技大学土木工程学院,包头 014010
Numerical Simulation of Microscopic Failure Process of Plastic Steel Fiber Lightweight Aggregate Concrete
LI Ge, XU Zehua, NIU Jiangang
School of Civil Engineering,Inner Mongolia University of Science and Technology,Baotou 014010
下载:  全 文 ( PDF ) ( 6958KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为从细观结构上研究塑钢纤维轻骨料混凝土的破坏机理,通过ANSYS有限元分析软件进行二次开发建立了塑钢纤维轻骨料混凝土模型,采用“生死单元”技术描述了各相材料的裂纹开展形态,模拟了塑钢纤维轻骨料混凝土抗压和劈裂抗拉试验。对轻骨料混凝土与塑钢纤维轻骨料混凝土的裂纹演变过程进行了比较,结果表明:在抗压试验中轻骨料混凝土裂纹最先出现在轻骨料中,随着荷载的增大,裂纹扩展到界面和砂浆中,并与相邻轻骨料的裂缝贯通;而对于塑钢纤维轻骨料混凝土,由于塑钢纤维的掺入,改变了轻骨料混凝土裂纹的扩展路径,提高了轻骨料混凝土的延展性,起到抑制裂纹扩展的作用。在劈裂抗拉试验中,对于塑钢纤维轻骨料混凝土,大部分塑钢纤维被拉断,只有一小部分被拔出。这与宏观试验结果基本一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李革
徐泽华
牛建刚
关键词:  塑钢纤维轻骨料混凝土  细观结构  裂纹扩展  抗压  劈裂抗拉    
Abstract: In order to study the failure mechanism of lightweight aggregate concrete structure of plastic fiber, and make an model of the steel fiber reinforced lightweight aggregate concrete by ANSYS finite element analysis software from the two development, using “element birth and death technology” describes the crack phase materials carried out form adopting finite element nume-rical technology to simulate splitting tensile test of plastic steel fiber reinforced lightweight aggregate concrete. Otherwise, the results of comparison of the crack of lightweight aggregate concrete and plastic steel fiber reinforced lightweight aggregate concrete process of evolution, shows that the crack of lightweight aggregate concrete first appeared in the lightweight aggregate, as the load increases, the crack propagates to the interface and mortar, and formed adjacent cracks that near to lightweight aggregate. For plastic steel fiber lightweight aggregate concrete, putting plastic steel fiber into lightweight aggregate concrete changed the crack propagation path, improved the ductility of lightweight aggregate concrete and suppress the propagation of the crack; meanwhile in the splitting tensile test. For plastic steel fiber lightweight aggregate concrete, most of the plastic steel fiber is pulled off, only a small part is extracted. In a word, the simulation results are in good agreement with the experimental results.
Key words:  plastic steel fiber lightweight aggregate concrete    meso structure    crack propagation    resist compression    splitting tensile
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51368042)
作者简介:  李革:男,1976年生,硕士,教授,研究方向为计算力学 E-mail:ligeab@imust.cn
引用本文:    
李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
LI Ge, XU Zehua, NIU Jiangang. Numerical Simulation of Microscopic Failure Process of Plastic Steel Fiber Lightweight Aggregate Concrete. Materials Reports, 2018, 32(14): 2412-2417.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.016  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2412
1 中国建筑科学研究院.轻骨料混凝土技术规程(JGJ51-2002)[S].北京:中国建筑工业出版社,2002.
2 Hwang Chaolung, Hung Mengfeng. Durability design and perfor-mance of sele-consolidating lightweight concrete[J]. Construction and Building Materials,2005,19(8):619.
3 Niu Jiangang, Li Jingjun, Yin Yaliu, et al. Experimental investigation on mechanical properties and optimal fiber content in plastic steel fiber reinforced lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society,2016,35(1):87(in Chinese).
牛建刚,李京军,尹亚柳,等.塑钢纤维轻骨料混凝土力学性能及最佳纤维掺量试验研究[J].硅酸盐通报,2016,35(1):87.
4 Zhang Zhen. Experimental study on mechanics properties of plastics-steel fiber and steel fiber reinforced light-weight aggregate concrete[D]. Baotou:Inner Mongolia University of Science and Technology,2012(in Chinese).
张镇.塑钢纤维与钢纤维增强轻骨料混凝土力学性能的试验研究[D].包头:内蒙古科技大学,2012.
5 Liu Haifeng, Han Li. Numerical simulation of dynamic mechanical behavior of concrete with two-dimensional random distribution of coarse aggregate[J]. Chinese Journal of High Pressure Physics,2016,30(3):191(in Chinese).
刘海峰,韩莉.二维骨料随机分布混凝土的动态力学性能数值模拟[J].高压物理学报,2016,30(3):191.
6 Li Ge, Ai Zhidan, Li Yan. Numerical simulation for random embarking of aggregate and fiber with two-dimensional meso-structure of fiber concrete[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition),2015,36(6):101(in Chinese).
李革,艾智丹,李彦.纤维混凝土二维细观结构中骨料与纤维随机投放的数值模拟[J].内蒙古农业大学学报(自然科学版),2015,36(6):101.
7 Leite J P B, Slowik V, Mihashi H. Computer simulation of fracture processes of concrete using mesolevel models of lattice structures[J]. Cement and Concrete Research,2004,34(6):1025.
8 Nagai Kohei, Sato Yasuhiko, Ueda Tamon. Mesoscopic simulation of failure of mortar and concrete by 2D RBSM[J]. Journal of Advanced Concrete Technology,2004,2(3):359.
9 Zhang Jugong. Numerical simulation of failure process and size effect of random short fiber reinforced concrete[J]. Highway Engineering,2015,40(2):87(in Chinese).
张巨功.短纤维增强混凝土破坏过程及其尺寸效应数值模拟[J].公路工程,2015,40(2):87.
10 Fuller W B, Thompson S E. The laws of proportioning concrete[J]. Transactions of the American Society of Civil Engineers,1907,59(1):14.
11 Walaraven J C, Reinhardt H W. Theory and experiments on the mechanical behavior of cracks in plain and relnforced concrete subjected to shear loading[J]. Heron,1981,26(1A):26.
12 Yang Kerong, Peng Gang, Bai Wei. Numerical simulation of dehiscence of concrete based on meso-level by ANSYS[J]. Concrete,2009(2):8(in Chinese).
杨克荣,彭刚,柏巍.基于ANSYS的混凝土微观层次开裂演化数值模拟[J].混凝土,2009(2):8.
13 Song Xiaoyuan, Shen Xiangdong, Li Hongyun, et al. Study on early-age elastic modulus of cement mortar with mineral powder dosage[J]. Bulletin of the Chinese Ceramic Society,2013,32(10):2138(in Chinese).
宋小园,申向东,李红云,等.掺矿渣粉水泥砂浆早期弹性模量的研究[J].硅酸盐通报,2013,32(10):2138.
14 Liu Xunbo, Li Pingjiang, Ji Yiqi. The effective elastic modulus of ceramsite and its predication[J]. Concrete,2005(3):35(in Chinese).
刘巽伯,李平江,计亦奇.陶粒有效弹性模量及其预估[J].混凝土,2005(3):35.
15 Li Shuguang, Li Qingbin. Method of meshing ITZ structure in 3D meso-level finite element analysis for concrete[J]. Finite Elements in Analysis and Design,2015,93:96.
16 Dang Faning, Tian Wei, Han Wentao. 3-D numerical simulation of concrete failure process and CT verification[J]. Journal of Water Resources,2012,37(6):674(in Chinese).
党发宁,田威,韩文涛.混凝土破裂过程三维数值模拟及CT验证[J].水利学报,2012,37(6):674.
17 Leite J P B. Computer simulation of fracture processes of concrete using mesolevel models of lattice structures[J]. Cement and Concrete Research,2004,34:1025.
18 Yu Jing, Li Xingfeng, Li Hongquan. comparative research of size effect on compression strength of normal concrete and light aggregate concrete[J]. Building Technique Development,2005,32(7):58(in Chinese).
余菁,李兴峰,李洪泉.普通混凝土和轻骨料混凝土强度尺寸效应的对比研究[J].建筑技术开发,2005,32(7):58.
19 Wang Licheng, Xing Likun, Song Yupu. Mesoscale modeling on size effect of splitting tensile strength and flexural compressive strength of concrete[J]. Engineering Mechanics,2014,31(10):69(in Chinese).
王立成,邢立坤,宋玉普.混凝土劈裂抗拉强度和弯曲抗压强度尺寸效应的细观数值分析[J].工程力学,2014,31(10):69.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[3] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[4] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[5] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[6] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[7] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[8] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[9] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[10] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[11] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[12] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[13] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[14] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[15] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed