Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2326-2330    https://doi.org/10.11896/cldb.18110009
  无机非金属及其复合材料 |
复合激发剂对碱矿渣胶结材水化进程及早期性能的影响
杨凯1, 张之璐1, 杨永1, 韩昊2, 黄文聪1, 朱效宏1, 唐德莎1, 李爽1, 杨长辉1
1 重庆大学材料科学与工程学院,重庆 400045;
2 中交二航局第二工程有限公司,重庆 401121
Impact of Activator Mix Proportions on Hydration Process and Early-age Properties of Alkali-Activated Slag Binder
YANG Kai1, ZHANG Zhilu1, YANG Yong1, HAN Hao2, HUANG Wencong1, ZHU Xiaohong1, TANG Desha1, LI Shuang1, YANG Changhui1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045;
2 China Communications 2nd Navigational Bureau 2nd Engineering Co., Ltd., Chongqing 401121
下载:  全 文 ( PDF ) ( 2128KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过混料设计研究了水玻璃、碳酸钠、氢氧化钠和氢氧化钙四种激发剂在复合条件下对矿渣的激发作用及对碱矿渣胶结材(AAS)早期性能的影响。使用水化微量热仪、X射线衍射仪、综合热分析仪分析了AAS的水化过程。结果显示:在碱当量和水胶比一定的条件下,复合激发剂仅能在100~130 mm范围内调节AAS砂浆的初始流动度,但对AAS砂浆抗压强度的影响显著。氢氧化钠的激发作用在3 d以内最显著,水玻璃对强度的贡献主要体现在3 d后;各激发剂间的交互作用主要体现在3 d以内的抗压强度上。与水玻璃激发AAS相比,在激发剂中加入1.5%碳酸钠会减缓AAS各龄期水化进程;加入3%氢氧化钙、1.5%和3%氢氧化钠能分别加快AAS 1 d和3 d内的水化进程,但均会降低28 d的水化进程。此外,根据ANOVA方差分析得到的回归方程,提出了利用激发剂种类和比例来调节及控制AAS水化进程的技术途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨凯
张之璐
杨永
韩昊
黄文聪
朱效宏
唐德莎
李爽
杨长辉
关键词:  碱矿渣胶结材  复合激发剂  抗压强度  水化进程    
Abstract: The effect of four different activators (water glass, sodium carbonate, sodium hydroxide, calcium hydroxide) on slag and early-age perfor-mance of alkali-activated slag binder were studied by mixture design. The hydration process of AAS was analysed by isothermal carlorimetry, X-ray diffraction and Thermogravimetry. The obtained results indicated that when alkali concentration and water to binder ratio kept constant, the initial fluidity of AAS mortar could be regulated only in the range of 100—130 mm by activator mix proportions, while the compressive strength development of AAS mortar was strongly affected. The effect of sodium hydroxide on slag was significant before 3 d, while water glass governed compressive strength development after 3 d. The interactions between different activators were found mainly significant at early stage (before 3 d). Compared with sample activated by water glass, when 1.5% sodium carbonate was used to replace the same Na2O concentration of water glass, the hydration process was delayed. The addition of 3% calcium hydroxide, 1.5% sodium hydroxide and 3% sodium hydroxide could accelerate the hydration process of AAS at 1 d and 3 d respectively, but both reduced the hydration process at 28 d. Furthermore, equations derived from ANOVA regression analysis offered approaches to optimize the AAS hydration process through varying activator types and their proportions.
Key words:  alkali-activated slag binder    activator mix proportions    compressive strength    hydration process
                    发布日期:  2019-06-19
ZTFLH:  TU528.01  
基金资助: 十三五国家重点研发计划(2017YFB0309905);国家自然科学基金(51778089;51708060)
通讯作者:  ychh@cqu.edu.cn   
作者简介:  杨凯,重庆大学副研究员。2012 年12 月毕业于英国贝尔法斯特女王大学,获得工学博士学位。主要从事碱性胶凝材料、混凝土渗透性等方面的研究。杨长辉,重庆大学教授。1998 年1 月毕业于重庆建筑大学,获工程博士学位。主要从事碱性胶凝材料及其混凝土、固体废渣处置和利用及建筑节能等方面的研究。
引用本文:    
杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
YANG Kai, ZHANG Zhilu, YANG Yong, HAN Hao, HUANG Wencong, ZHU Xiaohong, TANG Desha, LI Shuang, YANG Changhui. Impact of Activator Mix Proportions on Hydration Process and Early-age Properties of Alkali-Activated Slag Binder. Materials Reports, 2019, 33(14): 2326-2330.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110009  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2326
1 Provis J L, Palomo A, Shi C. Cement & Concrete Research, 2015, 78, 110.
2 Luukkonen T, Abdollahnejad Z, Yliniemi J, et al. Cement & Concrete Research, 2018, 103, 21.
3 Aydin S, Baradan B. Composites Part B: Engineering, 2014, 57, 166.
4 Kovtun M, Kearsley E P, Shekhovtsova J. Cement and Concrete Research, 2015, 72, 1.
5 Jeong Y, Oh J E, Jun Y, et al. Cement and Concrete Composites, 2016, 65, 1.
6 Haha M B, Le Saout G, Winnefeld F, et al. Cement and Concrete Research, 2011, 41(3), 301.
7 Qing-Hua C, Sarkar S L. Advanced Cement Based Materials, 1994, 1(4), 178.
8 Collins F G, Sanjayan J G. Cement and Concrete Research, 1999, 29(3), 455.
9 Palacios M, Banfill P F G, Puertas F. ACI Materials Journal, 2008, 105(2), 140.
10 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 2000, 30(9), 1367.
11 Thomas R J, Lezama D, Peethamparan S. Cement and Concrete Research, 2017, 91, 13.
12 Kumarappa D B, Peethamparan S, Ngami M. Cement and Concrete Research, 2018, 109, 1.
13 Ye H, Radlińska A. Cement and Concrete Research, 2017, 101, 131.
14 Huang X, Hu S, Wang F, et al. Construction and Building Materials, 2017, 146, 321.
15 Wang J B, Li F S, Zhou Z H, et al. Construction and Building Mate-rials, 2018, 158, 683.
16 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 1999, 29(1), 113.
[1] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[4] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[5] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[6] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[7] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[8] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[9] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[10] 姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
[11] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[12] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
[13] 漆小鹏, 李文, 罗远方, 杨辉. 新型钇-羟基磷灰石骨水泥的制备及性能研究*[J]. CLDB, 2017, 31(13): 151-155.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed