Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 6-9    https://doi.org/10.11896/j.issn.1005-023X.2017.024.002
  第一届先进胶凝材料研究与应用学术会议 |
玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理
方 圆,陈 兵
上海交通大学土木系,上海 200240
The Enhancement and Mechanism of Glass Fiber on Mechanical Properties of Magnesium Phosphate Cement Mortar
FANG Yuan, CHEN Bing
College of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 647KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 添加不同体积比的玻璃纤维,按照一定比例配制玻璃纤维增强磷酸镁水泥。研究了玻璃纤维增强磷酸镁水泥的抗压强度、抗折强度以及耐水性,并采用电镜扫描的方法对其微观结构进行了观察。研究结果表明,玻璃纤维对磷酸镁水泥的抗压强度和抗折强度都有一定贡献,其中纤维的最佳体积掺量约为2.5%,但超过最佳掺量后,抗压和抗折强度都有所降低。另外,实验结果还表明,稍过量的玻璃纤维能够暂时“包裹”未反应基材,可能在浸水环境中发生又一轮反应,从而抵消因浸水造成的强度损失,这可能是一种改善磷酸镁水泥耐水性的新方法。此外,本工作提供了与实验结果一致的纤维增强机理的可能解释。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方 圆
陈 兵
关键词:  玻璃纤维  磷酸镁水泥  抗压强度  抗折强度  耐水性    
Abstract: An experimental investigation into the compressive strength, the flexural strength and the water resistance of magnesium phosphate cement (MPC) mortar reinforced by glass fiber was conducted. Four fiber volume fractions of 1.5%, 2.5%, 3%, 3.5% were designed for the experiments. The microstructure, mechanical and water resistance properties of fiber-reinforced MPCs were evaluated with respect to the variance in the fiber volume fraction. The results showed that the glass fibers had more pronounced effects on the flexural strength compared to compressive strength. The optimum volume fraction of glass fiber was reported at 2.5%. Furthermore, the effect of glass fiber on the water resistance of MPC was discussed, and a “reserving” method to resist the strength loss by water was provided. In addition, a possible explanation of the fiber reinforcement mechanism which is in agreement with the experimental results was proposed.
Key words:  glass fiber    magnesium phosphate cement    compressive strength    flexural strength    water resistance
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU528.2  
基金资助: 国家自然科学基金(51778363)
作者简介:  方圆:女,1993年生,硕士研究生,研究方向为新型建筑材料 陈兵:男,1973年生,博士,研究员,博士研究生导师,主要从事新型建筑材料的研发与性能表征 E-mail:hntchen@sjtu.edu.cn
引用本文:    
方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
FANG Yuan, CHEN Bing. The Enhancement and Mechanism of Glass Fiber on Mechanical Properties of Magnesium Phosphate Cement Mortar. Materials Reports, 2017, 31(24): 6-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.002  或          https://www.mater-rep.com/CN/Y2017/V31/I24/6
1 Qiao F, Chau C K, Li Z. Property evaluation of magnesium phosphate cement mortar as patch repair material[J]. Constr Build Mater, 2010, 24(5):695.
2 Li Y, Lin H, Hejazi S M A S, et al. The effect of low temperature phase change material of hydrated salt on the performance of magnesium phosphate cement[J]. Constr Build Mater, 2017,149:272.
3 Li J, Zhang W, Cao Y. Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement[J]. Constr Build Mater, 2014,58(4):122.
4 Zhou H, Agarwal A K, Goel V K, et al. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem[J]. Mater Sci Eng C, 2013,33(7):4288.
5 Formosa J, Lacasta A M, Navarro A, et al. Magnesium phosphate cements formulated with a low-grade MgO by-product: Physico-mechanical and durability aspects[J]. Constr Build Mater, 2015,91:150.
6 Fan S, Chen B. Experimental study of phosphate salts influencing properties of magnesium phosphate cement[J]. Constr Build Mater, 2014,65(9):480.
7 Buj I, Torras J, Casellas D, et al. Effect of heavy metals and water content on the strength of magnesium phosphate cements[J]. J Hazard Mater, 2009,170(1):345.
8 Lu X, Chen B. Experimental study of magnesium phosphate cements modified by metakaolin[J]. Constr Build Mater, 2016,123:719.
9 Gardner L J, Bernal S A, Walling S A, et al. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag[J]. Cem Concr Res, 2015,74:78.
10Tan Y, Yu H, Li Y, et al. The effect of slag on the properties of magnesium potassium phosphate cement[J]. Constr Build Mater, 2016,126:313.
11Sarkar A K. Phosphate cement-based fast-setting binders[J]. Am Ceram Soc Bull, 1990,69(2):234.
12Li D X, Li P X, Feng C H. Research on water resistance of magnesium phosphate cement[J]. J Build Mater, 2009,12(5):505.
13Zhang G, Li G, He T. Effects of sulphoaluminate cement on the strength and water stability of magnesium potassium phosphate cement[J]. Constr Build Mater, 2017,132:335.
14Choi Y, Yuan R L. Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC[J]. Cem Concr Res, 2005,35(8):1587.
15Kizilkanat A B, Kabay N, Akyüncü V, et al. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study[J]. Constr Build Mater, 2015,100:218.
16Bai G Q, Dong J W. Discussion on the mechanism of the modification PPF influencing the compressive strength of the concrete[J]. Jilin Water Resources, 2005(6):1(in Chinese).
白国庆, 董建伟. 改性聚丙烯纤维影响混凝土抗压强度的机理初探[J]. 吉林水利, 2005(6):1.
17Mestres G, Ginebra M P. Novel magnesium phosphate cements with high early strength and antibacterial properties[J]. Acta Biomater, 2011,7(4):1853.
18Yoo D Y, Kim S, Park G J, et al. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites[J]. Compos Struct, 2017,174:375.
19Ren J, Zhao Y N, Zhang M. Interface of fiber-reinforced ceramic matrix composites and the development of toughening mechanism[J]. Ind Technol Vocational Education, 2013(1):3(in Chinese).
任江, 赵英娜, 张萌. 纤维增强陶瓷基复合材料界面及增韧机制的进展[J]. 工业技术与职业教育, 2013(1):3.
20Yu B W, Geng C, Zhou M, et al. Impact toughness of polypropylene/glass fiber composites: Interplay between intrinsic toughening and extrinsic toughening[J]. Composites Part B, 2016,92:413.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[3] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[4] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[7] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[8] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[9] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[10] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[11] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[12] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[13] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[14] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[15] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed