Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 6-9    https://doi.org/10.11896/j.issn.1005-023X.2017.024.002
  第一届先进胶凝材料研究与应用学术会议 |
玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理
方 圆,陈 兵
上海交通大学土木系,上海 200240
The Enhancement and Mechanism of Glass Fiber on Mechanical Properties of Magnesium Phosphate Cement Mortar
FANG Yuan, CHEN Bing
College of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 647KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 添加不同体积比的玻璃纤维,按照一定比例配制玻璃纤维增强磷酸镁水泥。研究了玻璃纤维增强磷酸镁水泥的抗压强度、抗折强度以及耐水性,并采用电镜扫描的方法对其微观结构进行了观察。研究结果表明,玻璃纤维对磷酸镁水泥的抗压强度和抗折强度都有一定贡献,其中纤维的最佳体积掺量约为2.5%,但超过最佳掺量后,抗压和抗折强度都有所降低。另外,实验结果还表明,稍过量的玻璃纤维能够暂时“包裹”未反应基材,可能在浸水环境中发生又一轮反应,从而抵消因浸水造成的强度损失,这可能是一种改善磷酸镁水泥耐水性的新方法。此外,本工作提供了与实验结果一致的纤维增强机理的可能解释。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方 圆
陈 兵
关键词:  玻璃纤维  磷酸镁水泥  抗压强度  抗折强度  耐水性    
Abstract: An experimental investigation into the compressive strength, the flexural strength and the water resistance of magnesium phosphate cement (MPC) mortar reinforced by glass fiber was conducted. Four fiber volume fractions of 1.5%, 2.5%, 3%, 3.5% were designed for the experiments. The microstructure, mechanical and water resistance properties of fiber-reinforced MPCs were evaluated with respect to the variance in the fiber volume fraction. The results showed that the glass fibers had more pronounced effects on the flexural strength compared to compressive strength. The optimum volume fraction of glass fiber was reported at 2.5%. Furthermore, the effect of glass fiber on the water resistance of MPC was discussed, and a “reserving” method to resist the strength loss by water was provided. In addition, a possible explanation of the fiber reinforcement mechanism which is in agreement with the experimental results was proposed.
Key words:  glass fiber    magnesium phosphate cement    compressive strength    flexural strength    water resistance
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU528.2  
基金资助: 国家自然科学基金(51778363)
作者简介:  方圆:女,1993年生,硕士研究生,研究方向为新型建筑材料 陈兵:男,1973年生,博士,研究员,博士研究生导师,主要从事新型建筑材料的研发与性能表征 E-mail:hntchen@sjtu.edu.cn
引用本文:    
方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
FANG Yuan, CHEN Bing. The Enhancement and Mechanism of Glass Fiber on Mechanical Properties of Magnesium Phosphate Cement Mortar. Materials Reports, 2017, 31(24): 6-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.002  或          http://www.mater-rep.com/CN/Y2017/V31/I24/6
1 Qiao F, Chau C K, Li Z. Property evaluation of magnesium phosphate cement mortar as patch repair material[J]. Constr Build Mater, 2010, 24(5):695.
2 Li Y, Lin H, Hejazi S M A S, et al. The effect of low temperature phase change material of hydrated salt on the performance of magnesium phosphate cement[J]. Constr Build Mater, 2017,149:272.
3 Li J, Zhang W, Cao Y. Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement[J]. Constr Build Mater, 2014,58(4):122.
4 Zhou H, Agarwal A K, Goel V K, et al. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem[J]. Mater Sci Eng C, 2013,33(7):4288.
5 Formosa J, Lacasta A M, Navarro A, et al. Magnesium phosphate cements formulated with a low-grade MgO by-product: Physico-mechanical and durability aspects[J]. Constr Build Mater, 2015,91:150.
6 Fan S, Chen B. Experimental study of phosphate salts influencing properties of magnesium phosphate cement[J]. Constr Build Mater, 2014,65(9):480.
7 Buj I, Torras J, Casellas D, et al. Effect of heavy metals and water content on the strength of magnesium phosphate cements[J]. J Hazard Mater, 2009,170(1):345.
8 Lu X, Chen B. Experimental study of magnesium phosphate cements modified by metakaolin[J]. Constr Build Mater, 2016,123:719.
9 Gardner L J, Bernal S A, Walling S A, et al. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag[J]. Cem Concr Res, 2015,74:78.
10Tan Y, Yu H, Li Y, et al. The effect of slag on the properties of magnesium potassium phosphate cement[J]. Constr Build Mater, 2016,126:313.
11Sarkar A K. Phosphate cement-based fast-setting binders[J]. Am Ceram Soc Bull, 1990,69(2):234.
12Li D X, Li P X, Feng C H. Research on water resistance of magnesium phosphate cement[J]. J Build Mater, 2009,12(5):505.
13Zhang G, Li G, He T. Effects of sulphoaluminate cement on the strength and water stability of magnesium potassium phosphate cement[J]. Constr Build Mater, 2017,132:335.
14Choi Y, Yuan R L. Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC[J]. Cem Concr Res, 2005,35(8):1587.
15Kizilkanat A B, Kabay N, Akyüncü V, et al. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study[J]. Constr Build Mater, 2015,100:218.
16Bai G Q, Dong J W. Discussion on the mechanism of the modification PPF influencing the compressive strength of the concrete[J]. Jilin Water Resources, 2005(6):1(in Chinese).
白国庆, 董建伟. 改性聚丙烯纤维影响混凝土抗压强度的机理初探[J]. 吉林水利, 2005(6):1.
17Mestres G, Ginebra M P. Novel magnesium phosphate cements with high early strength and antibacterial properties[J]. Acta Biomater, 2011,7(4):1853.
18Yoo D Y, Kim S, Park G J, et al. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites[J]. Compos Struct, 2017,174:375.
19Ren J, Zhao Y N, Zhang M. Interface of fiber-reinforced ceramic matrix composites and the development of toughening mechanism[J]. Ind Technol Vocational Education, 2013(1):3(in Chinese).
任江, 赵英娜, 张萌. 纤维增强陶瓷基复合材料界面及增韧机制的进展[J]. 工业技术与职业教育, 2013(1):3.
20Yu B W, Geng C, Zhou M, et al. Impact toughness of polypropylene/glass fiber composites: Interplay between intrinsic toughening and extrinsic toughening[J]. Composites Part B, 2016,92:413.
[1] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[5] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[6] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[7] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[8] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[9] 叶恩淦, 王海波, 朱月华, 蒋利华, 卓宁泽. 复配稀土改性剂对MGF/PTFE复合材料性能的影响[J]. 材料导报, 2018, 32(6): 961-964.
[10] 李茂红, 温静, 李依芮, 屈树新, 曾晓辉, 王平. 控制聚合与沉淀协同作用改善高铁轨道板涂料用水玻璃性能[J]. 材料导报, 2018, 32(24): 4264-4268.
[11] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[12] 罗学禹, 刘立柱. 防水用聚脲绝缘涂料的制备及性能研究[J]. 材料导报, 2018, 32(16): 2723-2727.
[13] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[14] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[15] 黄大建, 马宗红, 马晨阳, 王新伟. 甲壳素纳米纤维增强明胶/壳聚糖复合膜的制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 21-24.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed