Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22120057-8    https://doi.org/10.11896/cldb.22120057
  无机非金属及其复合材料 |
铅冶炼渣基生态胶凝材料的研发及重金属固化
刘文欢1,2, 胡静1, 赵忠忠1, 杜任豪1, 万永峰1, 雷繁1, 李辉1,2,*
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 教育部生态水泥工程研究中心,西安 710055
Development and Heavy Metal Solidification of Lead Smelting Slag-based Ecological Cementitious Materials
LIU Wenhuan1,2, HU Jing1, ZHAO Zhongzhong1, DU Renhao1, WAN Yongfeng1, LEI Fan1, LI Hui1,2,*
1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Ecological Cement Engineering Research Center of Ministry of Education, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 12270KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铅冶炼渣(LSS)是一种含有重金属(Cr、Ni、Cu、Zn、As和Pb)的危险废物,其不当处置会对生态系统造成不可挽回的危害。本工作采用化灰渣(LAS)、水氯镁石(BF)、矿粉(SP)及适量水泥(CM)协同激发铅冶炼渣制备生态胶凝材料。通过正交试验得到胶凝材料的最优配比,阐述了不同因素对生态胶凝材料抗压强度的影响;采用XRD、SEM、FTIR、硫酸和硝酸法等方法分析了胶凝材料水化产物的特性及重金属浸出规律。研究结果表明:当铅冶炼渣和水泥的质量比为3∶1,化灰渣、水氯镁石、矿粉的外掺量分别为铅冶炼渣和水泥质量总量的20%、10%、10%时,制备出的生态胶凝材料抗压强度最优,28 d抗压强度达到40.9 MPa,且矿粉掺量为影响其抗压强度的第一要素。微观分析表明,胶凝材料的水化产物主要为弗里德尔盐、方解石、C-S-H和C-A-S-H,它们相互连接形成致密的空间网络结构,这不但有助于提高胶凝材料的力学性能,还能实现对重金属元素的物理固封和离子交换吸附固化。胶凝材料对主要重金属的胶结固化率大于83%,重金属浸出液浓度符合生活饮用水卫生标准(GB5749-2006)的要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘文欢
胡静
赵忠忠
杜任豪
万永峰
雷繁
李辉
关键词:  铅冶炼渣  生态胶凝材料  抗压强度  水化产物  重金属  浸出液浓度    
Abstract: Lead smelting slag (LSS) is a hazardous waste containing heavy metals (Cr, Ni, Cu, Zn, As, and Pb), and its improper disposal can cause irreversible harm to the ecosystem. In this study, the ecological cementitious materials were prepared by using lime ash slag (LAS), bischofite (BF), slag powder (SP) and proper amount of cement (CM) co-excited LSS. The ideal cementitious material ratio was discovered through orthogonal tests, and the effects of various variables on the compressive strength of ecological cementitious materials were discussed. XRD, SEM, FTIR, and the sulfuric acid nitrate method were used to examine the properties of the cementitious materials' hydration products as well as the leaching law of heavy metals. The results show that when the mass ratio of LSS to cement is 3∶1, and the external admixture of lime ash slag, bischofite and mineral powder is 20%, 10% and 10% of the sum of the mass of LSS and cement respectively, the compressive strength of the prepared ecological cementitious material is optimal, and the 28 d compressive strength reaches 40.9 MPa, and the admixture of mineral powder is the first factor affecting its compressive strength. Microscopic analysis shows that the hydration products of the cementitious material are mainly Friedel's salt, calcite, C-S-H and C/M-A-S-H, which are interlinked to form a dense spatial network structure, which help to improve the mechanical properties of the cementitious material. The cementation solidification ratio of the cementitious material for the main heavy metals is greater than 83%, and the leaching solution concentration of heavy metals meets the requirements of the sanitary standard for domestic drinking water (GB5749-2006).
Key words:  lead smelting slag    ecological cementitious material    compressive strength    hydration product    heavy metal    leaching solution concentration
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TU526  
基金资助: 国家重点研发计划(2018YFC1903804;2021YFB3802003)
通讯作者:  *李辉,教授、博士研究生导师。1994年西安建筑科技大学材料科学与工程专业本科毕业,1997年西安建筑科技大学材料学专业硕士毕业后到西安建筑科技大学工作至今,2009年西安建筑科技大学材料学专业博士毕业。主要从事固体废弃物的资源化利用及新型水泥基材料的低碳制备等方面的研究工作。近年来发表论文100余篇,包括Chemical Engineering Journal、Journal of Hazardous Materials、Journal of Cleaner Production、Environmental Chemistry Letters、Construction and Building Materials、《硅酸盐学报》《建筑材料学报》《材料导报》等,2017年曾荣获国家科技进步二等奖。   
作者简介:  刘文欢,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。2004年西安建筑科技大学材料科学与工程专业本科毕业,2007年西安建筑科技大学材料学专业硕士毕业后到西安建筑科技大学工作至今,2019年西安建筑科技大学材料学专业博士毕业。目前主要从事生态建筑材料、固体废弃物的资源化利用等方面的研究工作。近年来发表论文20余篇,包括Journal of Cleaner Production、Case Studies in Construction Materials、《建筑材料学报》《材料导报》等。
引用本文:    
刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
LIU Wenhuan, HU Jing, ZHAO Zhongzhong, DU Renhao, WAN Yongfeng, LEI Fan, LI Hui. Development and Heavy Metal Solidification of Lead Smelting Slag-based Ecological Cementitious Materials. Materials Reports, 2024, 38(6): 22120057-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22120057  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22120057
1 Deng X H, Chai L Y, Yang Z H, et al. Ecology and Environmnet, 2015, 24(9), 1534(in Chinese)
邓新辉, 柴立元, 杨志辉, 等. 生态环境学报, 2015, 24(9), 1534.
2 Han J, Liu W, Qin W, et al. Minerals Engineering, 2017, 108, 1.
3 Liu X, Zhang Y, Wang N, et al. China Mining Magazine, 2015(Z1), 6(in Chinese).
刘晓, 张宇, 王楠, 等. 中国矿业, 2015(Z1), 6.
4 Li Y, Liu Z, Liu H, et al. Journal of Cleaner Production, 2017, 143, 311.
5 Mao L, Guo H, Zhang W. Construction and Building Materials, 2018, 163, 875.
6 Xiao Q, Zong Y, Lu S. Ecotoxicology and Environmental Safety, 2015, 120, 377.
7 Jiang J M. The Chinese Journal of Nonferrous Metals, 2004(S1), 52(in Chinese).
蒋继穆. 中国有色金属学报, 2004(S1), 52.
8 Pan D, Li L, Tian X, et al. Resources, Conservation and Recycling, 2019, 146, 140.
9 Zheng Y X, Liu W, Qin W Q, et al. Canadian Metallurgical Quarterly, 2015, 54(1), 92.
10 Alwaeli M. Journal of Cleaner Production, 2017, 166, 157.
11 Supit S W M, Shaikh F U A, Sarker P K. Construction and Building Materials, 2014, 51, 278.
12 Ustabaş İ, Kaya A. Construction and Building Materials, 2018, 164, 297.
13 Zhang Y M, Sun W, Yan H D. Cement and Concrete Composites, 2000, 22(6), 445.
14 Ahmedzade P, Sengoz B. Journal of Hazardous Materials, 2009, 165(1-3), 300.
15 Das B, Prakash S, Reddy P S R, et al. Resources, Conservation and Recycling, 2007, 50(1), 40.
16 Pasetto M, Baldo N. Journal of Hazardous Materials, 2010, 181(1-3), 938.
17 Yazıcı H, Yardımcı M Y, Yiiter H, et al. Cement and Concrete Compo-sites, 2010, 32(8), 639.
18 Zhang T, Yu Q, Wei J, et al. Resources, Conservation and Recycling, 2011, 56(1), 48.
19 Zhao Q L, Li H, Liu W H, et al. Journal of Functional Materials, 2021, 52(6), 6145(in Chinese).
赵启亮, 李辉, 刘文欢, 等. 功能材料, 2021, 52(6), 6145.
20 Xuan Q Q, Zhu J P, Li D X, et al. Bulletin of the Chinese Ceramic Society, 2007, 26(5), 929(in Chinese).
宣庆庆, 朱建平, 李东旭, 等. 硅酸盐通报, 2007, 26(5), 929.
21 Zhu S F. Effect of compound doping on sintering and properties of recycled cement clinker. Master's Thesis, Dalian University of Technology, China, 2016(in Chinese).
朱苏峰. 复合掺杂对再生水泥熟料烧成及性能的影响. 硕士学位论文, 大连理工大学, 2016.
22 Penpolcharoen M. Cement and Concrete Research, 2005, 35(6), 1050.
23 Zhang P, Muhammad F, Yu L, et al. Construction and Building Mate-rials, 2020, 249, 118756.
24 Bakharev T. Cement and Concrete Research, 2005, 35(6), 1224.
25 Sun Y L. Study on characteristics of cement raw materials and proportioning design in Changzhi area of Shanxi Province. Master's Thesis, Wuhan University of Technology, China, 2012(in Chinese).
孙于龙. 山西长治地区水泥原料特性及其配料设计研究. 硕士学位论文, 武汉理工大学, 2012.
26 Guo B. Fabrication of glass-ceramic and geopolymer using lead-zinc smelting slags and the immobilization mechanisms of Pb and Cd. Ph. D. Thesis, University of Science and Technology Beijing, China, 2018(in Chinese).
郭斌. 铅锌冶炼渣制备微晶玻璃和地质聚合物及其铅镉固化机理. 博士学位论文, 北京科技大学, 2018.
27 Deng X. New Building Materials, 2019, 46(5), 124(in Chinese).
邓璇. 新型建筑材料, 2019, 46(5), 124.
28 Gou M F, Guan X M, Zhang H B. Journal of Building Materials, 2012, 15(6), 863(in Chinese).
勾密峰, 管学茂, 张海波. 建筑材料学报, 2012, 15(6), 863.
29 Hu C G, Wang J, Bai R Y, et al. Journal of Functional Materials, 2018, 49(6), 6206(in Chinese).
胡晨光, 王娟, 白瑞英, 等. 功能材料, 2018, 49(6), 6206.
30 Bothe Jr J V, Brown P W. Cement and Concrete Research, 2004, 34(6), 1057.
31 Zhang J, Shi C, Zhang Z. Construction and Building Materials, 2019, 226, 21.
32 Gómez-Casero M A, Pérez-Villarejo L, Sánchez-Soto P J, et al. Sustai-nable Chemistry and Pharmacy, 2022, 29, 100746.
33 Rui Y, Qian C, Zhang X, et al. Journal of Cleaner Production, 2022, 132407.
34 Zhang W, Liu X, Wang Y, et al. Journal of Hazardous Materials, 2021, 410, 124592.
35 Akbar A, Kodur V K R, Liew K M. Cement and Concrete Composites, 2021, 121, 104069.
36 Wang X, Wang Q, Zhang B, et al. Chinese Journal of Engineering, 2018, 40(10), 1177(in Chinese).
王雪, 王全, 张滨, 等. 工程科学学报, 2018, 40(10), 1177.
37 Wang Y J, Li K Q, Ni W, et al. Metal Mine, 2019(7), 194(in Chinese).
王一杰, 李克庆, 倪文, 等. 金属矿山, 2019(7), 194.
38 Parthiban K, Saravana R M K. Construction and Building Materials, 2017, 133, 65.
39 Ghirian A, Fall M. International Journal of Mining Science and Technology, 2016, 26(5), 809.
40 Wang Y, Ni W, Zhang S Q, et al. Metal Mine, 2019(4), 5(in Chinese).
王莹, 倪文, 张思奇, 等. 金属矿山, 2019(4), 5.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[3] 魏鑫, 焦芬, 刘维, 顾丝雨, 汪辰, 覃文庆. 垃圾飞灰与粉煤灰协同熔融制备CAS体系微晶玻璃的研究[J]. 材料导报, 2025, 39(1): 23120096-8.
[4] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[5] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[6] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[7] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[8] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[9] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[10] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[11] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[12] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[13] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[14] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[15] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed