Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22100063-14    https://doi.org/10.11896/cldb.22100063
  无机非金属及其复合材料 |
粉煤灰制备沸石的技术及应用现状
张鹏1,*, 陈星月1, 李素芹2,*, 任志峰1, 李怡宏1, 赵爱春1, 何奕波1
1 太原科技大学材料科学与工程学院,太原 030024
2 北京科技大学冶金与生态工程学院,北京 100083
Development and Research Status of Zeolite Synthesized from Coal Fly Ash
ZHANG Peng1,*, CHEN Xingyue1, LI Suqin2,*, REN Zhifeng1, LI Yihong1, ZHAO Aichun1, HE Yibo1
1 College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 12605KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粉煤灰 (CFA) 是发电厂在燃煤过程中形成的固体废弃物,其大量堆积造成的环境污染以及可回收资源浪费问题亟需解决。在粉煤灰众多再利用方式中,制备高吸附性能的沸石是实现粉煤灰高附加值应用的有效途径之一。来源不同的粉煤灰理化性质差异较大,因此,制备沸石材料之前需采取不同的方法对其进行活化预处理。本文概述了沸石合成工艺之间的关系及其优缺点,并进一步阐述了粉煤灰基沸石在废水处理、气体吸附分离以及土壤改良等方面的应用前景。从粉煤灰预处理、沸石合成方法、产物应用领域等三个方面对粉煤灰制备沸石的整体发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏
陈星月
李素芹
任志峰
李怡宏
赵爱春
何奕波
关键词:  粉煤灰  沸石  预处理  绿色合成  重金属  吸附  修复    
Abstract: Coal fly ash (CFA) is an industrial by-product derived from coal combustion in thermal power plants. The large-scale accumulation of CFA has caused serious problems, such as environmental pollution and waste of recyclable matters, to which the solutions are of crucial urgency. Among the various ways of reusing CFA resources, preparation of zeolite with high adsorption performance is the effective one to achieve high value-added application. The physicochemical properties of CFA from different sources vary widely, therefore, different methods should be taken to pretreat CFA before zeolites are prepared. This paper introduces the relationship between zeolite synthesis processes and their advantages and disadvantages, and further elaborates the application prospects of CFA-based zeolites in wastewater treatment, gas adsorption and separation, soil improvement, etc. The paper also offers a prospective discussion about future development trend of zeolites production using CFA, from the perspectives of CFA pretreatment, zeolite synthesis method, and product applications.
Key words:  coal fly ash    zeolite    pretreatment    green synthesis    heavy metal    adsorption    remediation
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TF09  
基金资助: 山西省基础研究计划资助项目(202103021223277); 太原科技大学博士科研启动基金项目(20212025); 来晋工作优秀博士奖励资金项目(20222080)
通讯作者:  张鹏,太原科技大学材料科学与工程学院副教授、硕士研究生导师。2021年在北京科技大学获博士学位。目前主要从事冶金工业固废领域(包括铁尾矿、粉煤灰、除尘灰高值化利用)、炼铁工艺等领域的研究,以第一作者公开发表论文10余篇,其中SCI收录7篇,EI收录3篇,核心期刊2篇。主持山西省自然科学基金青年项目一项,山西省人才引进项目一项,太原科技大学博士科研启动基金项目一项。2021022@tyust.edu.com
李素芹,主要从事冶金资源循环与工业生态、工业废水处理与回用以及固废有价物提取与资源化利用等新技术研究,主持或参加国家、省部级及协作项目30余项,专利30余项,发表论文100余篇,代表著作4部,起草国家标准1项。先后获得教学成果奖10余项,研究生论文指导优秀奖、“我心目中最优秀教师称号”及“市级优秀女职工”称号,企业科技进步奖2项。编写教材入选国家级规划教材并获得全国冶金优秀教材二等奖,论文曾入选国家科技发展经典文库,获得Eni Award提名。目前兼任教育部学位与研究生教育评估专家、国家工信部及国家节能中心及钢铁工业协会奖励评审专家、科技部科技领军人才驱动中心特聘专家、中国生态经济学会工业生态经济与技术专业委员会成员、国家能源环境科技协会专家等社会职务。ustblisuqin@126.com   
引用本文:    
张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
ZHANG Peng, CHEN Xingyue, LI Suqin, REN Zhifeng, LI Yihong, ZHAO Aichun, HE Yibo. Development and Research Status of Zeolite Synthesized from Coal Fly Ash. Materials Reports, 2024, 38(7): 22100063-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100063  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22100063
1 Liu F, Cao W J, Zhang J M, et al. Journal of China Coal Society, 2021, 46(1), 1 (in Chinese).
刘峰, 曹文君, 张建明, 等. 煤炭学报, 2021, 46(1), 1.
2 Xing Y W, Guo F Y, Xu M D, et al. Powder Technology, 2019, 353, 373.
3 Amoni B C, Freitas A D L, Bessa R A, et al. Materials Chemistry Phy-sics, 2022, 275, 125197.
4 Sun Q, Cai C, Zhang S K, et al. Construction and Building Materials, 2019, 215, 321.
5 Mahedi M, Cetin B, Dayioglu A Y. Journal of Environmental Management, 2020, 253, 109720.
6 Yao Z T, Ji X S, Sarker P K, et al. Earth-Science Reviews, 2015, 141, 105.
7 Zhou H X, Bhattarai R, Li Y K, et al. Science of Total Environment, 2022, 804, 149985.
8 Zhang W, Wang S, Duan X, et al. Construction and Building Materials, 2023, 369, 130394.
9 ASTM. Standardspecification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual Book of ASTM Standards, 2010.
10 Vassilev S V, Vassileva C G. Fuel, 2007, 86(10-11), 1490.
11 Ahmaruzzaman M. Progress in Energy & Combustion Science, 2010, 36(3), 327.
12 Petrus H T B M, Olvianas M, Suprapta W, et al. Journal of Environmental Chemical Engineering, 2020, 8(5), 104116.
13 Belviso C. Progress in Energy and Combustion Science, 2018, 65, 109.
14 Gollakota A, Volli V, Shu C M. Science of Total Environment, 2019, 672, 951.
15 Lin Y J, Chen J C. Journal of Environmental Chemical Engineering, 2021, 9(6), 106549.
16 Ren X, Qu R, Liu S, et al. Aerosol and Air Quality Research, 2020, 20(5), 1127.
17 Zhang Y L, Yang M, Gui H, et al. Environmental Technology, 2019, 42(2), 1.
18 Liu Y H, Chen T H, Wang C, et al. Journal of the Chinese Ceramic Society, 2021, 49(7), 1429 (in Chinese).
刘玉慧, 陈天虎, 王灿, 等. 硅酸盐学报, 2021, 49(7), 1429.
19 Wang Z, Huang Z L, Wang P G, et al. Applied Chemical Industry, 2016, 45(6), 1100 (in Chinese).
王震, 黄珍丽, 王培根, 等. 应用化工, 2016, 45(6), 1100.
20 Chen Q Y, Yan C Y, Zhang L, et al. Coal Technology, 2014, 33(12), 342 (in Chinese).
陈群玉, 燕传勇, 张雷, 等. 煤炭技术, 2014, 33(12), 342.
21 Kumar S, Kumar R. Ceramics International, 2010, 37(2), 533.
22 Innocenti G, Benkeser D J, Dase J E, et al. Fuel, 2021, 299, 120892.
23 Wang C F, Li J S, Wang L J, et al. China Environmental Science, 2009, 29(1), 36 (in Chinese).
王春峰, 李健生, 王连军, 等. 中国环境科学, 2009, 29(1), 36.
24 Rosita W, Bendiyasa I M, Perdana I, et al. Journal of Environmental Chemical Engineering, 2020, 8(1), 103575.
25 Ning M. Comparative study on magnetic separation and properties of fly ash. Master’s Thesis. Chongqing University, China, 2019 (in Chinese).
宁美. 粉煤灰的磁选及其性质对比研究. 硕士学位论文, 重庆大学, 2019.
26 Lv Z Y, Pan X L, Geng X Z, et al. Journal of Environmental Chemical Engineering, 2022, 10(2), 107268.
27 Zhang L H, Ma S Q. Journal of Synthetic Crystals, 2020, 49(2), 339 (in Chinese).
张丽宏, 马斯琪. 人工晶体学报, 2020, 49(2), 339.
28 Ren X Y, Liu S J, Qu R Y, et al. Microporous and Mesoporous Mate-rials, 2019, 295, 109940.
29 Asl S M H, Masomi M, Tajbakhsh M. Journal of Cleaner Production, 2020, 258, 120688.
30 Li F W, Wei X X, Ma S J, et al. Environmental Science and Technology, 2003, 26(4), 13 (in Chinese).
李方文, 魏先勋, 马淞江, 等. 环境科学与技术, 2003, 26(4), 13.
31 Fu K M, Zhu H, Lu M X, et al. Journal of Synthetic Crystals, 2007, 36(4), 943 (in Chinese).
付克明, 朱虹, 路迈西, 等. 人工晶体学报, 2007, 36(4), 943.
32 Li F W, Wei X X, Li C T, et al. Techniques and Equipment for Environmental Pollution, 2002, 3(10), 61 (in Chinese).
李方文, 魏先勋, 李彩亭, 等. 环境污染治理技术与设备, 2002, 3(10), 61.
33 Akın S S, Kaan K S, Feyza K, et al. Microporous and Mesoporous Materials, 2021, 325, 111338.
34 Grela A, Hebda M, Łach M, et al. Microporous and Mesoporous Mate-rials, 2016, 220, 155.
35 Holler H, Wirsching U. Forschritte der Mineral, 1985, 63(1), 2l.
36 Liu S. Molecular sieves for the preparation of fly ash and its application. Master’s Thesis, North China University of Science and Technology, China, 2020 (in Chinese).
刘爽. 粉煤灰制备分子筛及其应用研究. 硕士学位论文, 华北理工大学, 2020.
37 Murayama N, Yamamoto H, Shibata J. International Journal of Mineral Processing, 2002, 64(1), 1.
38 Liu Z, Li S Q, Li L, et al. Fuel, 2019, 257, 116043.
39 Mahima K M, Hrudananda J. Microporous and Mesoporous Materials, 2022, 333, 111738.
40 Hollman G G, Steenbruggen G, Janssen-Jurkovicova M. Fuel, 1999, 78(10), 1225.
41 Iqbal A, Sattar H, Haider R, et al. Journal of Cleaner Production, 2019, 219, 258.
42 Li Y, Sun H M, Wang Y H, et al. Progress in Chemistry, 2015, 27(5), 503 (in Chinese).
历阳, 孙洪满, 王有和, 等. 化学进展, 2015, 27(5), 503.
43 Jin L. Synthesis of mesoporous molecular sieves using coal fly ash and its application in the organic wastewater treatment. Master’s Thesis. Beijing University of Chemical Technology, China, 2016 (in Chinese).
靳琳. 由粉煤灰制备介孔分子筛及其对有机废水的处理研究. 硕士学位论文, 北京化工大学, 2016.
44 Wu L, Li L F, Chen X H, et al. Journal of Solid State Chemistry, 2022, 308, 122899.
45 Zhou T X, Wang B D, Dai Z D, et al. Microporous and Mesoporous Materials, 2021, 314, 110872.
46 Sharma C, Deepak K, Kumar C A, et al. Physica B: Condensed Matter, 2022, 634, 413817.
47 Joseph I V, Tosheva L, Doyle A M. Journal of Environmental Chemical Engineering, 2020, 8(4), 103895.
48 Verrecchia G, Cafiero L, Caprariis B D, et al. Fuel, 2020, 276, 118041.
49 Querol X, Alastuey A, Lopez-Soler A, et al. Environmental Science & Technology, 1997, 31(9), 2527.
50 Bukhari S S, Behin J, Kazemian H, et al. Fuel, 2015, 140, 250.
51 Aldahri T, Behin J, Kazemian H, et al. Advanced Powder Technology, 2017, 28(11), 2865.
52 Inada M, Tsujimoto H, Eguchi Y, et al. Fuel, 2005, 84(12-13), 1482.
53 Xia S Q, Chen Y Y, Xu H S, et al. Microporous and Mesoporous Mate-rials, 2019, 278, 54.
54 Makgabutlane B, Nthunya L N, Nxumalo E N, et al. ACS omega, 2020, 5(39), 25000.
55 Bukhari S S, Behin J, Kazemian H, et al. Fuel, 2015, 140, 250.
56 Boycheva S, Marinov I, Miteva V, et al. Sustainable Chemistry and Pharmacy, 2020, 15, 100217.
57 Belviso C. Ultrasonics Sonochemistry, 2018, 43, 9.
58 Chen W, Song G, Lin Y, et al. Catalysis Today, 2022, 397, 407.
59 Park M, Choi C L, Lim W T, et al. Microporous and Mesoporous Mate-rials, 2000, 37(1-2), 81.
60 Choi C L, Park M, Lee D H, et al. Environmental Science & Technology, 2001, 35(13), 2812.
61 Xiao M, Hu X, Gong Y, et al. RSC Advances, 2015, 5(122), 100743.
62 Song R R, Xiao M, Hu X J, et al. Journal of Synthetic Crystals, 2017, 46(5), 897 (in Chinese).
宋瑞然, 肖敏, 胡晓钧, 等. 人工晶体学报, 2017, 46(5), 897.
63 Ren L M, Wu Q M, Yang C G, et al. Journal of American Chemical Society, 2012, 134(37), 15173.
64 Liu Y, Yan C J, Zhao J J, et. Journal of Cleaner Production, 2018, 202, 11.
65 Ren X Y. Synthesis, growth mechanism and adsorption performance of zeolites based on coal fly ash. Ph. D. Thesis, Zhejiang University, China, 2020 (in Chinese).
任晓宇. 粉煤灰基沸石的合成、生长机理及其吸附性能的研究. 博士学位论文, 浙江大学, 2020.
66 Lee M G, Yi G, Ahn B J, et al. Korean Journal of Chemical Enginee-ring, 2000, 17(3), 325.
67 Rodriguez A, Saez P, Diez E, et al. Environmental Progress & Sustai-nable Energy, 2018, 38(1), S352.
68 Murukutti M K, Hrudananda J. Journal of Hazardous Materials, 2022, 423, 127085.
69 Abatal M, Córdova Q A V, Olguín M T, et al. Applied sciences, 2019, 9(12), 2415.
70 Yang L Y, Gao M D, Wei T C, et al. Journal of Hazardous Materials, 2022, 424, 127428.
71 Ma Z, Zhang X, Lu G, et al. Chinese Journal of Chemical Engineering, 2022, 47, 193.
72 Gao S, Liu Y H. Journal of the Chinese Ceramic Society, 2021, 49(9), 2001 (in Chinese).
高珊, 刘颖慧. 硅酸盐学报, 2021, 49(9), 2001.
73 Hou Q Q, Li C Y, Guo F K, et al. Applied Chemical Industry, 2020, 49(9), 2270 (in Chinese).
侯芹芹, 李长晔, 郭凡凯, 等. 应用化工, 2020, 49(9), 2270.
74 Zhang Y N, Han H J, Wang X H, et al. Journal of Hazardous Materials, 2021, 415, 125627.
75 Xu H Y, Wu L C, Shi T N, et al. Science China: Technological Sciences, 2014, 57(6), 1127.
76 Gollakota A R K, Volli V, Munagapati V S, et al. Journal of Materials Research and Technology, 2020, 9(6), 15381.
77 Murnane J G, Brennan R B, Healy M G, et al. Journal of Environmental Quality, 2015, 44(5), 1674.
78 Ren G K, Ji L C, Xiang Y J. Industrial Water Treatment, 2015, 35(2), 75 (in Chinese).
任根宽, 纪利春, 相亚军. 工业水处理, 2015, 35(2), 75.
79 Hermassi M, Valderrama C, Font O, et al. Science of Total Environment, 2020, 731, 139002.
80 Chen X Y, Wendell K, Zhu J, et al. Bioresource Technology, 2012, 110, 79.
81 Fu H, Li Y, Yu Z, et al. Journal of Hazardous Materials, 2020, 393, 122481.
82 Yang Z H, Zhang X M, Yang Z J, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2023, 40(1), 1(in Chinese).
杨哲涵, 张贤明, 杨镇嘉, 等. 重庆工商大学学报(自然科学版), 2023, 40(1), 1.
83 Wdowin M, Macherzynski M, Panek R, et al. Clay Minerals, 2015, 50(1), 31.
84 Czuma N, Zarebska K, Baran P. E3S Web of Conferences, 2016, 10, 00010.
85 Wang B, Ma L J, Han L N, et al. Chemical Engineering Science: X, 2021, 10, 100089.
86 Chen W T, Song G Q, Lin Y Y, et al. Microporous and Mesoporous Materials, 2021, 326, 111353.
87 Zhang Z H, Xiao Y F, Wang B D, et al. Energy Procedia, 2017, 114, 25372544.
88 Lai M M, Wu H, Zhai C Z, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2024, 41(1), 60(in Chinese).
赖明敏, 吴虹, 翟崇治, 等. 重庆工商大学学报(自然科学版), 2024,41(1), 60.
89 Chiang Y C, Chiang P C, Huang C P. Carbon, 2001, 39(4), 523.
90 Li L, Wei X Y, Liu G H, et al. Fuel, 2022, 316, 123185.
91 Liu J, Wang T, Shi N, et al. Fuel, 2022, 313, 123043.
92 Pavlovic S M, Marinkovic D M, Kostic M D, et al. Fuel, 2020, 267, 117171.
93 Luo Y N, Cheng Y, Luo C Z, et al. Journal of Chongqing University of Technology(Natural Science), 2022, 36(1), 222(in Chinese).
罗泳楠, 程焱, 罗程钟, 等. 重庆理工大学学报(自然科学), 2022, 36(1), 222.
94 Lahori A H, Mierzwa-Hersztek M, Demiraj E, et al. Chemosphere, 2020, 250, 126317.
95 Shi W, Shao H, Li H, et al. Journal of Hazardous Materials, 2009, 170(1), 1.
96 Wang W, Lu T, Liu L, et al. Chemosphere, 2022, 302, 134851.
97 Zheng X J, Chen M, Wang J F, et al. ACS Omega, 2020, 5(42), 27374.
98 Obiri-Nyarko F, Grajales-Mesa S J, Malina G. Chemosphere, 2014, 111, 243.
99 Koshy N, Singh D N. Journal of Environmental Chemical Engineering, 2016, 4(2), 1460.
100 Du Y J, Fan R D, Liu S Y, et al. Engineering Geology, 2015, 195, 258.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 魏鑫, 焦芬, 刘维, 顾丝雨, 汪辰, 覃文庆. 垃圾飞灰与粉煤灰协同熔融制备CAS体系微晶玻璃的研究[J]. 材料导报, 2025, 39(1): 23120096-8.
[6] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[7] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[8] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[9] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[10] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[11] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[12] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[13] 谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
[14] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[15] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed