Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22090256-6    https://doi.org/10.11896/cldb.22090256
  无机非金属及其复合材料 |
微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能
罗树琼1, 葛亚丽1, 潘崇根2, 袁盛3, 杨雷1,*
1 河南理工大学材料科学与工程学院,河南省深地材料科学与技术重点实验室,绿色高性能建筑材料河南省杰出外籍科学家工作室,河南 焦作 454003
2 宁波理工学院土木建筑工程学院,浙江 宁波 315100
3 宁波建工广天构件有限公司,浙江 宁波 315100
Microstructure of Fly Ash Activated by Microwave and Early Performance of Fly Ash-Cement Paste
LUO Shuqiong1, GE Yali1, PAN Chonggen2, YUAN Sheng3, YANG Lei1,*
1 Henan Outstanding Foreign Scientists’ Workroom, Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Enginee-ring, Henan Polytechnic University, Jiaozuo 454003, Henan, China
2 School of Engineering & Architecheture, Ningbo Tech University, Ningbo 315100, Zhejiang, China
3 Ningbo Construction Guangtian Component Co., Ltd., Ningbo 315100, Zhejiang, China
下载:  全 文 ( PDF ) ( 10842KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波辐照是激发粉煤灰活性的一种高效低碳的活化方式,高活性粉煤灰有利于早强混凝土的制备。本工作首先研究了微波辐照温度(600 ℃、700 ℃、800 ℃)对粉煤灰物理化学性能的影响,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)对其物相组成和微观形貌进行表征,然后研究了活性粉煤灰-水泥浆体的早期性能。研究结果表明:微波辐照促使粉煤灰中的石英相和莫来石相向非晶相转化,极大地提高了粉煤灰的活性。当微波辐照温度为800 ℃时,与未活化粉煤灰相比,活性粉煤灰非晶相含量从49.13% 增加到了58.71%,且28 d活性指数高达94.13%,提高了33.06%。与未活化粉煤灰-水泥浆体相比,800 ℃微波辐照的粉煤灰-水泥浆体的早期力学性能提升非常显著,其中1 d的抗压强度增加了41.36 %。因此,微波辐照活化粉煤灰的合适温度为800 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗树琼
葛亚丽
潘崇根
袁盛
杨雷
关键词:  微波辐照  粉煤灰  活化  微观结构  水化    
Abstract: Microwave irradiation is a low carbon and effective method of activation to stimulate the activity of fly ash, and high-activity fly ash is beneficial to the preparation of early-strength concrete. In this study, effects of microwave irradiation temperature (600 ℃, 700 ℃, 800 ℃) on the physico-chemical properties of fly ash were studied. The phase composition and microstructure were characterized by XRD and SEM. At the same time, the early properties of fly ash-cement paste system were investigated. Results showed that microwave irradiation promoted the transformation of quartz and mullite phases in fly ash to amorphous phase, which greatly improved the activity of fly ash. When the microwave irradiation temperature was 800 ℃, compared with crude fly ash, the amorphous phase content increased from 49.13% to 58.71%. The 28 d activity index reached 94.13%, increased by 33.06%. Compared with the crude fly ash-cement paste, the early mechanical properties of the fly ash-cement paste irradiated by microwave at 800 ℃ were significantly improved, and the compressive strength at 1 d increased by 41.36%. Therefore, the suitable temperature for microwave irradiation activating fly ash was 800 ℃.
Key words:  microwave irradiation    fly ash    activation    microstructure    hydration
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TU528.041  
基金资助: 宁波市科技创新2025重大专项(2020Z040);国家自然科学基金(52278256;51808196);河南理工大学博士基金(B2021-15);河南理工大学博士后基金(672108/106);河南理工大学2022年度基本科研业务费专项(NSFRF220418)
通讯作者:  杨雷,河南理工大学材料科学与工程学院副教授、硕士研究生导师。2001年本科毕业于焦作工学院无机非金属材料专业,2007年12月在武汉理工大学建筑材料与工程专业得博士学位。主要从事绿色建筑材料和固体废弃物综合利用的研究工作。近年来,在国内外重要学术期刊上发表论文30余篇,其中被SCI收录6篇。yanglei@hpu.edu.cn   
作者简介:  罗树琼,河南理工大学材料科学与工程学院副教授、硕士研究生导师。2001年本科毕业于焦作工学院无机非金属材料专业,2020年5月在伦敦大学学院土木工程专业得博士学位。主要从事低碳水泥基材料的研究工作。近年来,在国内外重要学术期刊上发表论文40余篇,其中被SCI收录10余篇。
引用本文:    
罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
LUO Shuqiong, GE Yali, PAN Chonggen, YUAN Sheng, YANG Lei. Microstructure of Fly Ash Activated by Microwave and Early Performance of Fly Ash-Cement Paste. Materials Reports, 2024, 38(7): 22090256-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090256  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22090256
1 Kumar R, Kumar S, Mehrotra S P. Resources, Conservation and Recycling, 2007, 52(2), 157.
2 Garcia-Lodeiro I, Carcelen-Taboada V, Fernández-Jiménez A, et al. Construction and Building Materials, 2016, 105, 218.
3 Poplawski J, Lelusz M. Materials, 2021, 14, 6654.
4 Alahrache S, Winnefeld F, Champenois J B, et al. Cement and Concrete Composites, 2016, 66, 10.
5 Hemalatha T, Ramaswamy A. Journal of Cleaner Production, 2017, 147, 546.
6 Nawaz M A, Ali B, Qureshi L A, et al. Case Studies in Construction Materials, 2020, 13, e00407.
7 Ma B G, Li H, Li X G, et al. Construction and Building Materials, 2016, 122, 242.
8 Shi C J, Qian J S. Energy Sources, 2003, 25(6), 617.
9 Ali B, Qureshi L A, Shah S H A, et al. Construction and Building Materials, 2020, 251, 118980.
10 Wang Y L, Luo S Q, Yang L, et al. Construction and Building Mate-rials, 2021, 282, 122685.
11 Leea C Y, Leeb H K, Leeb K M. Cement and Concrete Research, 2003, 33, 425.
12 Marjanović N, Komljenović M, Bašč arević Z, et al. Construction and Building Materials, 2014, 57, 151.
13 Aydın S, Karatay Ç, Baradan B. Powder Technology, 2010, 197(1-2), 68.
14 Ke G J, Yang X F, Peng H, et al. Journal of China Coal Society, 2005(3), 366 (in Chinese).
柯国军, 杨晓峰, 彭红, 等. 煤炭学报, 2005(3), 366.
15 Makul N. Case Studies in Construction Materials, 2020, 13, e00358.
16 Qiu Q L, Jiang X G, Lv G J, et al. Chemistry Letters, 2018, 47(8), 960.
17 Zhou B C, Zhou J W, Zhang L B, et al. JOM, 2019, 71(9), 2959.
18 Zhang Z Y, Qiao X C, Yu J G. Fuel Processing Technology, 2015, 134, 303.
19 Hu T, Kou L Y, Yang L, et al. Powder Technology, 2021, 377, 739.
20 Xu D H, Li H Q, Bao W J, et al. Hydrometallurgy, 2016, 165, 336.
21 Fernández-Jiménez A, Palomo A, Criado M. Cement and Concrete Research, 2005, 35(6), 1204.
22 Wu Y, Zhai Y C, Yin Z, et al. Mining and Metallurgical Engineering, 2009, 29(1), 71 (in Chinese).
吴艳, 翟玉春, 尹振, 等. 矿冶工程, 2009, 29(1), 71.
23 Yin B, Kang T H, Kang J T, et al. International Journal of Concrete Structures and Materials, 2018, 12(1), 2234.
24 Kocak Y, Nas S. Construction and Building Materials, 2014, 73, 25.
25 Chang J D. Study on microwave hydrothermal synthesis of tobermorite. Master’s Thesis, Henan Polytechnic University, China, 2021 (in Chinese).
常金丹. 微波水热合成托贝莫来石研究. 硕士学位论文, 河南理工大学, 2021.
26 Zhang Q G, Yang Q F, Jiao Y Z, et al. Coal Ash, 2002(5), 3 (in Chinese).
张全国, 杨群发, 焦有宙, 等. 粉煤灰, 2002(5), 3.
27 Fu Y L, Zhao G J, Quan S J. Acta Materiae Compositae Sinica, 2006, 23(4), 52(in Chinese).
符韵林, 赵广杰, 全寿京. 复合材料学报, 2006, 23(4), 52.
28 Chou S Y, Lo S L, Hsieh C H, et al. Journal of Hazardous Materials, 2009, 163, 357.
29 Yang K. Study on microstructure of high strength geopolymer and solidification/stabilization of organic pollutants by geopolymer. Master’s Thesis, Shanghai Jiao Tong University, China, 2020 (in Chinese).
杨昆. 高强地聚物微观结构表征与固封有机污染物性能研究. 硕士学位论文, 上海交通大学, 2020.
30 Hesse C, Goetz-Neunhoeffer F, Neubauer J. Cement and Concrete Research, 2011, 41, 123.
31 Li H Y, Ding Z, Xing F, et al. Concrete, 2008(10), 54 (in Chinese).
李虹燕, 丁铸, 邢锋, 等. 混凝土, 2008(10), 54.
32 Garcia-Lodeiro I, Fernandez-Jimenez A, Palomo A. Cement and Concrete Composites, 2013, 39, 82.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[5] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[6] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[7] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[8] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[11] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[12] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[13] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[14] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[15] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed