Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22080088-10    https://doi.org/10.11896/cldb.22080088
  无机非金属及其复合材料 |
二硫化钼自润滑涂层性能及制备工艺的研究进展
于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟*
上海理工大学材料与化学学院,上海 200093
Review of the Performance and Preparation of Molybdenum Disulfide Self-lubricating Coatings
YU Kai, WANG Jingjing, LIU Ping, MA Xun, ZHANG Ke, MA Fengcang, LI Wei*
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
下载:  全 文 ( PDF ) ( 11478KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 MoS2是过渡族金属二硫化物中的一员,其涂层材料因独特的层状结构而表现出优异的摩擦学性能。MoS2自润滑涂层在刀具以及空间部件材料的表面减磨和保护上发挥着重要作用,但是MoS2涂层对湿度的敏感性、附着力差以及耐磨寿命有限等问题限制了其应用。国内外学者在MoS2涂层的摩擦学研究上做了大量工作,目前的研究重点主要是不同温度、湿度、气体介质的多环境下的摩擦学行为分析,以及通过纳米多层体系的设计实现对晶体结构的可控。本文概述了2010年以来有关MoS2自润滑涂层材料的研究进展,主要综述了MoS2自润滑涂层的摩擦学性能以及不同元素掺杂对其性能和结构的影响。总结了MoS2涂层的组成结构、性能、制备工艺,并对其在表面润滑领域的研究和应用前景进行了展望。本文对MoS2自润滑涂层的研究和工程应用具有参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于凯
王静静
刘平
马迅
张柯
马凤仓
李伟
关键词:  二硫化钼自润滑涂层  摩擦学性能  微观结构  制备工艺  元素掺杂    
Abstract: Because of its unique laminar structure, MoS2, which is a member of the transition metal dichalcogenides, exhibits excellent tribological pro-perties. MoS2 plays a major role as a self-lubricating coating in the surface wear reduction and protection of tools and space component materials. However, the sensitivity of MoS2 coatings to moisture, as well as its poor adhesion and wear life, limit its application. Considerable tribological research of MoS2 coatings has been conducted globally, and current research has focused on analyzing tribological behavior in multiple environments under different temperatures, humidity, and gaseous media. The design of nanomultilayer systems to achieve controllable crystal structures has also been a topic of study. In this paper, the research progress on MoS2 self-lubricating coating materials since 2010 is outlined. We primarily review the tribological properties of MoS2 self-lubricating coatings and the effects of different elemental dopings on the properties and structures. The compositions of structures, their properties, and the preparation of MoS2 coatings are summarized, and the research prospects and applications for surface lubrication are discussed. This paper can be a significant reference for the research and engineering applications of MoS2 self-lubricating coatings.
Key words:  molybdenum disulfide self-lubricating coatings    tribological properties    microstructure    preparation process    elemental doping
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TG178  
基金资助: 国家自然科学基金(51971148)
通讯作者:  李伟,上海理工大学材料与化学学院教授、博士研究生导师。2008年上海交通大学材料物理与化学专业博士毕业后到上海理工大学工作至今。目前从事纳米结构功能薄膜材料、生物医用材料、高熵合金材料、PVD技术及其应用方面的研究。发表学术论文80余篇,以第一作者/通信作者在Materials Research Letters、Scripta Materialia、Materials and Design等SCI收录期刊发表论文共42篇。liwei176@usst.edu.cn   
作者简介:  于凯,2015年6月于聊城大学获得工学学士学位。现为上海理工大学材料与化学学院硕士研究生,在李伟教授的指导下进行研究。目前主要研究领域为固体润滑涂层,磁控溅射技术及应用。
引用本文:    
于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
YU Kai, WANG Jingjing, LIU Ping, MA Xun, ZHANG Ke, MA Fengcang, LI Wei. Review of the Performance and Preparation of Molybdenum Disulfide Self-lubricating Coatings. Materials Reports, 2024, 38(7): 22080088-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080088  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22080088
1 Sun R L, Sun S W, Guo L X, et al. Aerospace Materials & Technology, 1999(1), 17 (in Chinese).
孙荣禄, 孙树文, 郭立新, 等. 宇航材料工艺, 1999(1), 17.
2 Martin J, Donnet C, Le-Mogne T, et al. Physical Review B, Condensed Matter, 1993, 48, 207.
3 Hilton M R, Fleischauer P D. Surface and Coatings Technology, 1992, 54-55, 435.
4 Voumard P, Savan A, Pflüger E. Lubrication Science, 2001, 13(2), 135.
5 Wang G P, Li N G. Infrared, 2005(10), 33 (in Chinese).
王桂平, 李宁刚. 红外, 2005(10), 33.
6 Lansdown A R. Tribology International, 1999, 33(2), 148.
7 Xu Y, Xie M, Li Y, et al. Surface and Coatings Technology, 2020, 403, 126362.
8 Singh H, Mutyala K C, Evans R D, et al. Surface and Coatings Techno-logy, 2015, 284, 281.
9 Lu X, Yan M, Yan Z, et al. Tribology International, 2021, 156, 106844.
10 Tian P P, Niu Z W, Liu K F, et al. Plating & Finishing, 2021, 43(10), 14 (in Chinese).
田佩佩, 牛宗伟, 刘可峰, 等. 电镀与精饰, 2021, 43(10), 14.
11 Yuan J, Zhu Y, Zheng X, et al. Journal of Alloys and Compounds, 2011, 509(5), 2576.
12 Dickinson R G, Pauling L. Journal of the American Chemical Society, 1923, 45(6), 1466.
13 Buck V. Wear, 1987, 114(3), 263.
14 Xu J, Zhou Z R, Zhang C H, et al. Journal of Materials Processing Technology, 2007, 182(1), 146.
15 Liu C, Chen L, Zhou J, et al. Applied Surface Science, 2014, 300, 111.
16 Shi L, Sun C, Liu W. Applied Surface Science, 2008, 254(21), 6880.
17 Savan A, Pflüger E, Voumard P, et al. Lubrication Science, 2000, 12(2), 185.
18 Qin X, Ke P, Wang A, et al. Surface and Coatings Technology, 2013, 228, 275.
19 Li Y, Xie M, Sun Q, et al. Surface and Coatings Technology, 2019, 378, 125081.
20 Serpini E, Rota A, Ballestrazzi A, et al. Surface and Coatings Technology, 2017, 319, 345.
21 Meng F, Yang C, Han H. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology, 2018, 232(8), 964.
22 Wang X, Wang T, Ye M, et al. Diamond and Related Materials, 2019, 98, 107471.
23 Fleischauer P D. ASLE Transactions, 1984, 27(1), 82.
24 Muratore C, Voevodin A A. Thin Solid Films, 2009, 517(19), 5605.
25 Kong N, Wei B, Li D, et al. RSC Advances, 2020, 10(16), 9633.
26 Khare H S, Burris D L. Tribology Letters, 2013, 53(1), 1.
27 Li L, Lu Z, Pu J, et al. Ceramics International, 2020, 46(5), 5733.
28 Li H, Li X, Zhang G, et al. Tribology Letters, 2017, 65(2), 38.
29 Ju P F, Wang H X, Pu J B, et al. Chinese Journal of Vacuum Science and Technology, 2018, 38(10), 901 (in Chinese).
鞠鹏飞, 王海新, 蒲吉斌, 等. 真空科学与技术学报, 2018, 38(10), 901.
30 Cao M, Zhao L, Wu L, et al. Coatings, 2018, 8, 134.
31 Lu C, Jia J, Fu Y, et al. Surface and Coatings Technology, 2019, 378, 125072.
32 Zhang X, Qiao L, Chai L, et al. Surface and Coatings Technology, 2016, 296, 185.
33 Wu Y, Liu Y, Yu S, et al. Tribology Letters, 2016, 64(2), 24.
34 Grosseau-Poussard J L, Moine P, Brendle M. Thin Solid Films, 1997, 307(1), 163.
35 Neuville S. Surface and Coatings Technology, 2011, 206(4), 703.
36 Li H, Xie M, Zhang G, et al. Applied Surface Science, 2018, 435, 48.
37 Wu Y, Li H, Li J, et al. Tribology Letters, 2013, 52(3), 371.
38 Song W, Deng J, Yan P, et al. Journal of Wuhan University of Technology(Materials Science Edition), 2011, 26(3), 5.
39 Han C, Li G, Ma G, et al. Surface and Coatings Technology, 2021, 405, 126625.
40 Song G H, Du H, He C L. Hard and superhard coatings——structure, properties, preparation and characterization, Chemical Industry Press, China, 2011, pp. 24 (in Chinese).
宋贵宏, 杜昊, 贺春林. 硬质与超硬涂层——结构、性能、制备与表征, 化学工业出版社, 2011, pp. 24.
41 Zhang C, Yang B, Wang J, et al. Surface and Coatings Technology, 2019, 359, 334.
42 He Y D, Qi H B. Introduction to corrosion and protection of materials, China Machine Press, China, 2005, pp. 218 (in Chinese).
何业东, 齐慧滨. 材料腐蚀与防护概论, 机械工业出版社, 2005, pp.218.
43 Wang Z P, Lu P C, Sun Z. Welding Technology, 2012, 41(7), 7 (in Chinese).
王志平, 路鹏程, 孙振. 焊接技术, 2012, 41(7), 7.
44 Satyavathi Yedida V V, Vasudev H. Materials Today, Proceedings, 2022, 50, 1458.
45 Xu H Y, Zhou H D, Chen J M, et al. Materials for Mechanical Enginee-ring, 2005(3), 35 (in Chinese).
徐海燕, 周惠娣, 陈建敏, 等. 机械工程材料, 2005(3), 35.
46 Deng W, Zhao X, An Y, et al. Tribology International, 2018, 128, 260.
47 Liu Q, Wang Y, Bai Y, et al. Surface and Coatings Technology, 2021, 421, 127383.
48 Wang Q, Li X, Niu W, et al. Surface and Coatings Technology, 2020, 391, 125699.
49 Darolia R. International Materials Reviews, 2013, 58(6), 315.
50 Luo J, Wang Y D, Cai Z B, et al. Journal of Mechanical Engineering, 2012, 48(17), 100 (in Chinese).
罗军, 王运动, 蔡振兵, 等. 机械工程学报, 2012, 48(17), 100.
51 Zhu M H, Zhou H D, Chen J M, et al. Tribology, 2002(1), 14 (in Chinese).
朱旻昊, 周惠娣, 陈建敏, 等. 摩擦学报, 2002(1), 14.
52 Li B, Jiang X, Wu Y, et al. Progress in Organic Coatings (Elsevier), 2019, 132, 211.
53 Cao T K, Yang Q L, Shan C S. Lubrication Engineering, 2012, 37(11), 55 (in Chinese).
曹同坤, 杨岐龙, 单春生. 润滑与密封, 2012, 37(11), 55.
54 Zhang M Y. Microstructure optimization and tribological properties of Ni-SiC-MoS2 composite coating on aluminum alloy. Master’s Thesis, Chang’an University, China, 2020 (in Chinese).
张梦瑶. 铝合金表面Ni-SiC-MoS2复合镀层的组织优化和摩擦学性能研究. 硕士学位论文, 长安大学, 2020.
55 Pinate S, Leisner P, Zanella C. Surface and Coatings Technology, 2021, 421, 127400.
56 Xie Q Q, Zhou Y, Liu J Q, et al. Electroplating & Finishing, 2015, 34(23), 1329 (in Chinese).
谢强强, 周银, 刘家强, 等. 电镀与涂饰, 2015, 34(23), 1329.
57 Du S, Li Z, He Z, et al. Tribology International, 2018, 128, 197.
58 Wang J Z, Jiang S W, Song S, et al. Journal of Alloys and Compounds, 2019, 786, 594.
59 Li Z, Wang J, Lu J, et al. Applied Surface Science, 2013, 264, 516.
60 Zou T Z, Tu J P, Zhang S C, et al. Materials Science and Engineering, A, 2006, 426(1), 162.
61 Zhou H, Zheng J, Wen Q P, et al. Physics Procedia, 2011, 18, 234.
62 Su Y L, Kao W H. Tribology International, 2003, 36(1), 11.
63 Ding X Z, Zeng X T, He X Y, et al. Surface and Coatings Technology, 2010, 205(1), 224.
64 Gao K, Wang Y, Zhang B, et al. Tribology International, 2022, 170, 107499.
65 Hebbar Kannur K, Yaqub T B, Huminiuc T, et al. Applied Surface Science, 2020, 527, 146790.
66 Hebbar Kannur K, Huminiuc T, Yaqub T B, et al. Surface and Coatings Technology, 2021, 408, 126791.
67 Hudec T, Roch T, Gregor M, et al. Surface and Coatings Technology, 2021, 405, 126722.
68 Sun W D, Gu X L, Yang L N, et al. Surface and Coatings Technology, 2020, 399, 126140.
69 Zhang J, Wang Y, Zhou S, et al. Tribology International, 2020, 143, 106029.
70 Ma G Z, He P F, Wang Y W, et al. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233(8), 1236.
71 Ren S, Shang K, Cui M, et al. Journal of Materials Science, 2019, 54(18), 11889.
[1] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[5] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[6] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[7] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[8] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[9] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[10] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[11] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[12] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[13] 张建伟, 李智睿, 曹克磊, 陈磊, 赵江雨. 某水库粉质粘土渗透特性及微观机理研究[J]. 材料导报, 2024, 38(24): 23090129-8.
[14] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[15] 黄玺, 张亮, 王曦, 陈晨, 卢晓. 电子封装用纳米级无铅钎料的研究进展[J]. 材料导报, 2024, 38(23): 23080181-13.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed