Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22080107-4    https://doi.org/10.11896/cldb.22080107
  无机非金属及其复合材料 |
合成工艺对固相法制备高四方性纯钛酸钡粉体的影响
路宇1,2, 周斌2,3, 韩冰1,2, 赵国祥2,3, 陈学锋2,4,*, 王根水4
1 中国科学技术大学稀土学院,合肥 230026
2 中国科学院赣江创新研究院,江西 赣州 341000
3 南昌大学材料和物理学院,南昌 330031
4 中国科学院上海硅酸盐研究所,上海 200050
Effect of Synthesis Process on the Preparation of Pure Barium Titanate Powder with High Tetragonality by Solid State Reaction
LU Yu1,2, ZHOU Bin2,3, HAN Bing1,2, ZHAO Guoxiang2,3, CHEN Xuefeng2,4,*, WANG Genshui4
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, Jiangxi, China
3 School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
4 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
下载:  全 文 ( PDF ) ( 6539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛酸钡是一种重要的功能陶瓷材料,因具有优异的电学性能而被广泛应用于多层陶瓷电容器(MLCC)等电子元器件。本研究以碳酸钡和二氧化钛为原料,采用固相法制备形貌均匀且四方性高的BaTiO3粉体,系统研究了合成工艺(合成温度、升温速率和保温时间)对BaTiO3粉体的影响。通过TG/DTA、XRD和SEM等测试手段对BaTiO3粉体进行表征,结果表明:合成温度主要影响BaTiO3粉体的四方性,保温时间和升温速率主要影响BaTiO3粉体的粒径和粒度分布;原材料经过90 r/min球磨24 h后,在合成温度1 050 ℃、升温速率5 ℃/min和保温时间3 h的条件下,制备了平均粒径为400 nm、四方性(c/a)为1.009 1的形貌均匀的BaTiO3粉体。本工作为固相法制备高可靠性MLCC用纯BaTiO3粉体提供了良好的研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
路宇
周斌
韩冰
赵国祥
陈学锋
王根水
关键词:  钛酸钡  固相法  合成工艺  高四方性    
Abstract: Barium titanate is an important functional ceramic material, which is widely used in electronic components such as multilayer ceramic capacitors (MLCC) due to its excellent dielectric properties. BaTiO3 powders with uniform morphology and high tetragonality were synthesized by solid state reaction between barium carbonate and titanium dioxide as the raw materials in this study. Then the effects of synthesis process (synthesis temperature, heating rate and holding time) on the BaTiO3 powders were investigated systematically. The products were characterized by thermogravimetric/differential thermal analysis (TG/DTA), X-ray diffraction (XRD) and field emission scanning electron microscopy (SEM). The results showed that the synthesis temperature mainly affected the tetragonality of BaTiO3 powders, the hold time and heating rate mainly affected the particle size and size distribution; the BaTiO3 powders with an average particle size of 400 nm and a tetragonality (c/a) of 1.009 1 were prepared at a synthesis temperature of 1 050 ℃, a heating rate of 5 ℃/min, and a hold time of 3 h. The work provided a good research idea for the preparation of high-reliability pure BaTiO3 powders used for MLCC by solid state reaction.
Key words:  barium titanate    solid state reaction    synthesis process    high tetragonality
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(U2002217;11774366);中国科学院重点部署项目(ZDRW-CN-2021-3-1)
通讯作者:  陈学锋,中国科学院赣江创新研究院和中国科学院上海硅酸盐研究所研究员、博士研究生导师。2001年武汉理工大学材料科学与工程学院无机非金属材料专业本科毕业,2004年中国建筑材料科学研究院材料学专业硕士毕业后到中国科学院上海硅酸盐研究所工作至今,2017年中国科学院上海硅酸盐研究所材料物理与化学专业博士毕业,2020年到中国科学院赣江创新研究院工作至今。目前主要从事反铁电/铁电陶瓷的组成-性能-结构构效关系及其工程应用。发表SCI论文近百篇,其中以第一作者或者通信作者在Nat.Commun.、Sci.Adv.、J.Mater.Chem.C、J.Appl.Phys.、J.Am.Ceram.Soc.等期刊发表论文20多篇。授权中国发明专利10项。xfchen@mail.sic.ac.cn   
作者简介:  路宇,2020年6月毕业于聊城大学,获理学学士学位。现为中国科学技术大学稀土学院硕士研究生,导师为陈学锋研究员,主要研究领域为铁电陶瓷材料。
引用本文:    
路宇, 周斌, 韩冰, 赵国祥, 陈学锋, 王根水. 合成工艺对固相法制备高四方性纯钛酸钡粉体的影响[J]. 材料导报, 2024, 38(7): 22080107-4.
LU Yu, ZHOU Bin, HAN Bing, ZHAO Guoxiang, CHEN Xuefeng, WANG Genshui. Effect of Synthesis Process on the Preparation of Pure Barium Titanate Powder with High Tetragonality by Solid State Reaction. Materials Reports, 2024, 38(7): 22080107-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080107  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22080107
1 Pithan C, Hennings D, Waser R. International Journal of Applied Cera-mic Technology, 2005, 2(1), 1.
2 Kishi H, Mizuno Y, Chazono H. Japanese Journal of Applied Physics, 2003, 42(1), 1.
3 Hong K, Lee T H, Suh J M, et al. Journal of Materials Chemistry C, 2019, 7, 9782.
4 Buscaglia V, Buscaglia M T, Canu G. Encyclopedia of Materials: Technical Ceramics and Glasses, 2021, 3, 311.
5 Cochran W. Advances in Physics, 1960, 9, 387.
6 Yoon D H, Lee B I. Journal of Ceramic Processing Research, 2002, 3(2), 41.
7 Hogiri M, Kagata H. Key Engineering Materials, 2010, 421-422, 293.
8 Buscaglia M T, Bassoli M, Buscaglia V. Journal of the American Ceramic Society, 2005, 88(9), 2374.
9 Hu Q Y, Huang H, Wen J X, et al. Rare Metal Materials and Enginee-ring, 2020, 49(2), 0476.
10 Zhao Q C, Wang X H, Kim J Y, et al. Solid State Phenomena, 2018, 281, 71.
11 Kozawa T, Onda A, Yanagisawa K. Journal of the European Ceramic Society, 2009, 29(15), 3259.
12 Ryu S S, Yoon D H. Journal of Materials Science, 2007, 42, 7093.
13 Hennings D F K, Schreinemacher B S, Schreinemacher H. Journal of the American Ceramic Society, 2001, 84(12), 2777.
14 Li J, He K, Zhou Z H, et al. Ceramics International, 2017, 43(17), 14813.
15 Krzmanc M M, Klement D, Jancar B, et al. Ceramics International, 2015, 41(10), 15128.
16 Wang W W, Cao L X, Liu W, et al. Ceramics International, 2013, 39(6), 7127.
17 Panomsuwan G, Manuspiya H. Materials Research Express, 2019, 6(6), 065062.
18 Jung W S, Park J, Park Y, et al. Ceramics International, 2010, 36(6), 1997.
19 Hennings D F K, Metzmacher C, Schreinemacher B S. Journal of the American Ceramic Society, 2001, 84(1), 179.
20 Zhu X H, Zhu J M, Zhou S H, et al. Journal of Crystal Growth, 2008, 310(2), 434.
[1] 张昌松, 王向阳, 魏立柱, 王如鹏. 折叠结构的PVDF/BTO复合薄膜压电纳米发电机的制备及性能研究[J]. 材料导报, 2024, 38(6): 22080132-6.
[2] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[3] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[4] 赵瑞钰, 欧阳琪, 马名生, 陆毅青, 魏红康, 刘志甫. Bi0.5Na0.5TiO3和Bi0.5K0.5TiO3含量对三元固溶体系无铅PTC热敏陶瓷性能的影响[J]. 材料导报, 2023, 37(10): 21110026-6.
[5] 陈渊, 何正绩, 杨家添, 胡华宇, 梁恣荣, 李琼, 秦毓才. 新型丙烯酸接枝淀粉减水剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 20090155-7.
[6] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[7] 汪丰麟, 张为军, 毛海军, 白书欣. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022, 36(1): 20100126-12.
[8] 姚海燕, 范文亮. BaTiO3薄膜纳米发电机平衡压电势的理论研究[J]. 材料导报, 2021, 35(Z1): 59-61.
[9] 孙永菊, 陈建伟, 梅华平, 刘静, 李桃生, 吴庆生. 氮化铀(UN)粉末合成工艺分析[J]. 材料导报, 2021, 35(19): 19036-19040.
[10] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[11] 温慧霞, 樊彬, 李红喜, 许成功, 王玉莹, 赵文玉. 近紫外白光LED用Ba3Y1-x-yB3O9xEu3+,yBi3+高效红色荧光粉的制备与发光性能[J]. 材料导报, 2020, 34(14): 14023-14026.
[12] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[13] 庄晓东, 李荣兴, 俞小花, 谢刚, 和晓才, 徐庆鑫. 固相法制备钛酸锂电极材料[J]. 材料导报, 2019, 33(16): 2654-2659.
[14] 张雄,周永江,黄丽华. 机载龙伯透镜天线用聚苯乙烯泡沫塑料的制备及介电常数调控[J]. 材料导报编辑部, 2017, 31(10): 96-100.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed