Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22080132-6    https://doi.org/10.11896/cldb.22080132
  高分子与聚合物基复合材料 |
折叠结构的PVDF/BTO复合薄膜压电纳米发电机的制备及性能研究
张昌松*, 王向阳, 魏立柱, 王如鹏
陕西科技大学机电工程学院,西安 710016
Preparation and Performance Study of PVDF/BTO Composite Film Piezoelectric Nanogenerators with Folded Structure
ZHANG Changsong*, WANG Xiangyang, WEI Lizhu, WANG Rupeng
School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710016, China
下载:  全 文 ( PDF ) ( 9551KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高聚偏氟乙烯(PVDF)的压电输出性能,将钛酸钡(BTO)纳米颗粒引入到PVDF溶液中,使用流延法制备PVDF/BTO复合压电薄膜,采用高温拉伸与电极化工艺处理复合薄膜。使用扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、差示扫描量热仪和准静态压电常数测试仪对复合薄膜的形貌和压电性能进行表征,探究BTO含量对PVDF/BTO复合薄膜的影响,研究BTO诱导PVDF链条偶极子重新排列形成β晶型的机理。结果表明,当BTO含量为10%(质量分数)时,PVDF/BTO复合薄膜的晶体结构中β晶型的含量最多,压电性能最强。最后设计了不同层数的折叠结构并组装制成压电纳米发电机(PENG),发现折叠层数越多,PENG的最大输出电压越高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昌松
王向阳
魏立柱
王如鹏
关键词:  聚偏氟乙烯  钛酸钡  压电纳米发电机  压电性能    
Abstract: To improve the piezoelectric output performance of polyvinylidene fluoride (PVDF), barium titanate (BTO) nanoparticles were introduced into PVDF solution, and PVDF/BTO composite piezoelectric films were prepared using the flow-delay method, and the composite films were treated by high-temperature stretching and electrodeposition processes. The morphology and piezoelectric properties of the composite films were characterized using scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, differential scanning calorimeter and quasi-static piezoelectric constant tester to investigate the effect of BTO content on the PVDF/BTO composite films and to study the mechanism of BTO-induced rearrangement of PVDF chain dipoles to form β-crystalline form. The results show that when the BTO content is 10wt%, the PVDF/BTO composite film has the most β-crystalline type in the crystal structure and the strongest piezoelectric properties. Finally, the folded structures with different layers were designed and assembled into piezoelectric nanogenerators (PENG), and it was found that the higher the number of folded layers, the higher the maximum voltage output of PENG.
Key words:  polyvinylidene fluoride    barium titanate    piezoelectric nanogenerator    piezoelectric property
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TM22+1  
基金资助: 西安近代化学研究所开放合作创新基金项目(SYJJ200304)
通讯作者:  *张昌松,陕西科技大学机电工程学院副教授、硕士研究生导师。2002年2月在陕西科技大学取得工学硕士学位,2006年3月在西北工业大学取得工学博士学位。主要从事机械设计与制造、先进材料制备与工艺、CAD/CAM/CAE等方面的研究与教学工作。以第一作者发表论文40篇以上,其中SCI、EI检索10篇以上,主编教材、著作5部,以第一发明人授权发明专利5项,实用新型专利8项。   
引用本文:    
张昌松, 王向阳, 魏立柱, 王如鹏. 折叠结构的PVDF/BTO复合薄膜压电纳米发电机的制备及性能研究[J]. 材料导报, 2024, 38(6): 22080132-6.
ZHANG Changsong, WANG Xiangyang, WEI Lizhu, WANG Rupeng. Preparation and Performance Study of PVDF/BTO Composite Film Piezoelectric Nanogenerators with Folded Structure. Materials Reports, 2024, 38(6): 22080132-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080132  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22080132
1 Wu J, Yang J H. Control Theory & Applications, 2004, 21(6), 864 (in Chinese).
吴捷, 杨俊华. 控制理论与应用, 2004, 21(6), 864.
2 Jiang Z H, Ma J. Ecological Economy, 2019, 35(4), 160 (in Chinese).
姜照华, 马娇. 生态经济, 2019, 35(4), 160.
3 Guo R, Zhang H L, Cao S L, et al. Materials & Design, 2019, 182, 108025.
4 Liu S, Wu X M, Kong Y Y, et al. Applied Sciences, 2021, 11(3), 1299.
5 Mhetre M R, Abhyankar H K. Engineering Science and Technology, An International Journal, 2017, 20(1), 332.
6 Lovinger A J. In:Developments in Crystalline Polymers—1, Bassett D C, Polymer Science and Technology Series, UK, 1982, pp. 195.
7 Li J L, Yin J H, Yang C, et al. Journal of Polymer Science, 2019, 57(10), 574.
8 Niu Y J, Yu K, Bai Y Y, et al. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(1), 108.
9 Fang Y. Effect of grain and phase boundary on the properties of barium zirconate titanate-based lead-free piezoelectric ceramics. Master's Thesis, Jilin University, China, 2021 (in Chinese).
方宇. 晶粒和相界对锆钛酸钡基无铅压电陶瓷性能的影响. 硕士学位论文, 吉林大学, 2021.
10 Fu J, Hou Y D, Zheng M P, et al. Polymer Composites, 2019, 40(S1), E570.
11 Baji A, Mai Y W, Li Q, et al. Nanoscale, 2011, 3(8), 3068.
12 Su Y. Preparation and characterazation of barium titanate/polyvinydene fluoride composites. Master's Thesis, Beijing University of Chemical Technology, China, 2012 (in Chinese).
栗艳. 聚偏氟乙烯/钛酸钡复合材料的制备及介电性能的研究. 硕士学位论文, 北京化工大学, 2012.
13 Huang W Q, Li D Y, Li X, et al. Plastics Science and Technology, 2021, 49(3), 06 (in Chinese).
黄卫清, 李德友, 李霞, 等. 塑料科技, 2021, 49(3), 06.
14 Zhu J H. Preparation and performance study of PVDF piezoelectric film and sensor. Master's Thesis, Harbin Institute of Technology, China, 2012 (in Chinese).
朱金海. PVDF压电薄膜及其传感器的制备与性能研究. 硕士学位论文, 哈尔滨工业大学, 2012.
15 Guo C, Zhang D, Liu H Y, et al. Journal of Synthetic Crystals, 2020, 49(1), 39 (in Chinese).
郭聪, 张丹, 刘华一, 等. 人工晶体学报, 2020, 49(1), 39.
16 Gong L, Zhan S P, Wang W J. Journal of Dalian University, 2016, 37(6), 59 (in Chinese).
宫蕾, 詹世平, 王卫京. 大连大学学报, 2016, 37(6), 59.
17 Shen L, Gong L, Chen S H, et al. Plasma Science and Technology, 2018, 20(6), 065510.
18 Rinaldo G J, Marcelo C. Journal of Polymer Science Part B: Polymer Physics, 1994, 32(5), 859.
19 Sencadas V, Gregorio Filho R, Lanceros-Mendez S. Journal of Non-Crystalline Solids, 2006, 352(21-22), 2226.
20 Mendes S F, Costa C M, Caparros C, et al. Journal of Materials Science, 2012, 47, 1378.
21 Park Y W, Inagaki N. Ploymer, 2003, 44(5), 1569.
22 Ye Y, Guo T L, Jiang Y D, et al. Chinese Journal of Materials Research, 2011, 25(4), 403 (in Chinese).
叶芸, 郭太良, 蒋亚东, 等. 材料研究学报, 2011, 25(4), 403.
[1] 路宇, 周斌, 韩冰, 赵国祥, 陈学锋, 王根水. 合成工艺对固相法制备高四方性纯钛酸钡粉体的影响[J]. 材料导报, 2024, 38(7): 22080107-4.
[2] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[3] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[4] 赵瑞钰, 欧阳琪, 马名生, 陆毅青, 魏红康, 刘志甫. Bi0.5Na0.5TiO3和Bi0.5K0.5TiO3含量对三元固溶体系无铅PTC热敏陶瓷性能的影响[J]. 材料导报, 2023, 37(10): 21110026-6.
[5] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[6] 张晓蝶, 丁井鲜, 黄建建, 王放, 马丽, 郭东杰. PEDOT夹心PVDF多孔膜的电驱动性能研究[J]. 材料导报, 2022, 36(10): 21010222-6.
[7] 汪丰麟, 张为军, 毛海军, 白书欣. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022, 36(1): 20100126-12.
[8] 姚海燕, 范文亮. BaTiO3薄膜纳米发电机平衡压电势的理论研究[J]. 材料导报, 2021, 35(Z1): 59-61.
[9] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[10] 张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
[11] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[12] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[13] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
[14] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[15] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed