Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22080085-5    https://doi.org/10.11896/cldb.22080085
  高分子与聚合物基复合材料 |
多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能
黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典*
合肥学院能源材料与化工学院,合肥 230601
Preparation and Performance of Multi-layer Structural Polyacrylamide Hydrogel Solar-driven Evaporator
LI Tao, MENG Weiming, WANG Dingding, WEI Chunxiang, LU Hongdian*
School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
下载:  全 文 ( PDF ) ( 10424KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 优化设计太阳能蒸发器的结构并提高光热转换效率是改善其蒸发性能的有效途径。本工作基于原位自由基聚合反应,设计了一种多层结构的聚丙烯酰胺(PAM)复合水凝胶太阳能蒸发器并研究了其性能。该水凝胶由底部PAM/纳米纤维素(PAM/CNF)水运输层、中部PAM/碳纳米管/氮化钛(PAM/CNTs/TiN)光热转换层以及顶部“孤岛”状PAM/空心MXene微球(PAM/HSMX)构成的粗糙表面层组成。这种设计构建的PAM/CNF-PAM/CNTs/TiN-PAM/HSMX多层结构水凝胶太阳能蒸发器(ML-SVG)不仅能够提高光热转换效率,减少热量的损耗,而且促进了水分的运输,从而赋予ML-SVG优良的蒸发性能。ML-SVG在2 kW·m-2太阳光照射下的蒸发速率达到2.2 kg·m-2·h-1,同时具有优良的循环使用性能,高效的污水净化和盐水淡化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黎涛
孟威明
王丁丁
卫春祥
鲁红典
关键词:  水凝胶  聚丙烯酰胺  多层结构太阳能蒸发器  水处理    
Abstract: Optimizing the structure and enhancing photothermal conversion efficiency are effective ways to improve the performance of solar-driven eva-porator. Based on in-situ radical polymerization, a multi-layer structural polyacrylamide (PAM) hydrogel solar-driven evaporator was designed and its relevant performance was investigated. The evaporator was constructed by polyacrylamide/nanocellulose (PAM/CNF) as the water transport layer at the bottom, polyacrylamide/carbon nanotubes/titanium nitride (PAM/CNTs/TiN) as the photothermal conversion layer in the middle, and a rough surface layer of islanded polyacrylamide/hollow MXene microsphere (PAM/HSMX) on the top. As a result, the built PAM/CNF-PAM/CNTs/TiN-PAM/HSMX multi-layer structural hydrogel solar-driven evaporator (ML-SVG) can not only improve the photothermal conversion efficiency and reduce heat loss, but also promote the transportation of water, thus imparted it excellent evaporation performance. ML-SVG exhibites high evaporation rate of 2.2 kg·m-2·h-1 under 2 kW·m-2 sun irradiation, good recycling performance, and high efficient wastewater purification and saline desalination abilities.
Key words:  hydrogel    polyacrylamide    multi-layer structural solar-driven evaporator    water treatment
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TB332  
基金资助: 安徽省自然科学基金青年项目 (2108085QB47); 安徽省高校科研重大项目 (2022AH040251)
通讯作者:  鲁红典,合肥学院能源材料与化工学院教授、硕士研究生导师。1997年安徽大学化学系化学专业本科毕业,2006年中国科学技术大学安全技术及工程专业博士毕业。目前主要从事聚合物复合材料、安全技术及工程等方面的研究工作。发表学术论文100余篇,授权中国发明专利10余项。luhdo@hfuu.edu.cn   
作者简介:  黎涛,2020年6月于安徽新华学院获得工学学士学位。现为合肥学院能源材料与化工学院硕士研究生,在鲁红典教授的指导下进行研究。目前主要研究领域为太阳能水蒸发和自愈合水凝胶。
引用本文:    
黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
LI Tao, MENG Weiming, WANG Dingding, WEI Chunxiang, LU Hongdian. Preparation and Performance of Multi-layer Structural Polyacrylamide Hydrogel Solar-driven Evaporator. Materials Reports, 2024, 38(7): 22080085-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080085  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22080085
1 Wu X, Chen G Y, Owens G, et al. Materials Today Energy, 2019, 12, 277.
2 Tian Y, Liu X, Xu S, et al. Desalination, 2022, 523, 115449.
3 Zhao F, Guo Y H, Zhou X Y, et al. Nature Reviews Materials, 2020, 5(5), 388.
4 Wei C X, Zhang Q G, Wang Z, et al. Advanced Functional Materials, 2022, 22, 11889.
5 Hou Y Q, Wang M, Chen X Y, et al. Nano Research, 2021, 14(7), 2171.
6 He W, Zhou L, Wang M, et al. Science Bulletin, 2021, 66, 1472.
7 Du Y P, Chen Y C, Sha C C, et al. Journal of Liaoning Shihua University, 2020, 40(5), 6 (in Chinese).
杜运平, 陈宇超, 沙畅畅, 等. 辽宁石油化工大学学报, 2020, 40(5), 6.
8 Huang H, Zhao L, Yu Q, et al. ACS Applied Materials & Interfaces, 2020, 12(9), 11204.
9 Qi Q B, Wang Y, Wang W, et al. Science of the Total Environment, 2020, 698, 134136.
10 Guo Y H, Zhao F, Zhou X Y, et al. Nano Letters, 2019, 19(4), 2530.
11 Sui Y J, Hao D D, Guo Y, et al. Journal of Materials Science, 2019, 55(1), 298.
12 Zhou X Y, Guo Y H, Zhao F, et al. Accounts of Chemical Research, 2019, 52(11), 3244.
13 Cao S, Jiang J Y, Tian Q Y, et al. Green Energy & Environment, 2022, 7(5), 1006.
14 Chen H R, Meng W M, Wang R Y, et al. Carbon, 2022, 190, 319.
15 Yan Z, Niu X J, Li H R, et al. Journal of Northeast Electric Power University, 2021, 41(6), 8 (in Chinese).
晏哲, 牛晓娟, 李浩然, 等. 东北电力大学学报, 2021, 41(6), 8.
16 Wang D B, Fang Y X, Yu W, et al. Solar Energy Materials and Solar Cells, 2021, 220, 110850.
17 Zhao F, Zhou X Y, Shi Y, et al. Nature Nanotechnology, 2018, 13(6), 489.
18 Yu Z C, Wu P Y. Advanced Materials Technologies, 2020, 5(6), 2000065.
[1] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[2] 党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
[3] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[4] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[5] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[6] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[7] 吴强, 商伶俐, 李学锋, 张高文, 黄以万, 龙世军. 多糖聚电解质静电组装高强度水凝胶膜的组织粘接抑菌性[J]. 材料导报, 2024, 38(18): 23030284-6.
[8] 李雪艳, 张蒙茜, 裴文乐, 李莎莎, 李鹏. 以聚丙烯酰胺为电解液添加剂稳定金属锌负极[J]. 材料导报, 2024, 38(15): 24020018-5.
[9] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[10] 杨水艳, 盛扬, 孙一新, 蔡仁钦, Mark Bradley, 张嵘. 基于丙烯酸-N-琥珀酰亚胺酯共聚物交联剂的壳聚糖水凝胶的生物相容性研究[J]. 材料导报, 2024, 38(12): 22120119-10.
[11] 王石, 陈昱恺, 周新甲, 呼博渊, 王勇, 李瑜, 井新利. 导电高分子水凝胶及其应变传感性能研究进展[J]. 材料导报, 2024, 38(11): 22120184-11.
[12] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[13] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[14] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[15] 何贤会, 杨培昕, 卢小鸾, 汤陆扬, 付阳洋, 彭黔荣, 杨敏. 用于阴道黏膜给药的纳米胶束复合温敏水凝胶的制备及性能评价[J]. 材料导报, 2023, 37(19): 22040117-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed