Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23090015-7    https://doi.org/10.11896/cldb.23090015
  高分子与聚合物基复合材料 |
羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究
唐言1, 严娇1, 王犁1,2, 安鹏1,2, 颜贵龙1,2, 来婧娟1,2, 李振宇1,2, 周利华1,2, 武元鹏1,2,*
1 西南石油大学新能源与材料学院,油气田工作液功能材料研究中心,成都 610500
2 西南石油大学油气藏地质及开发工程全国重点实验室,四川省玄武岩纤维复合材料开发及应用工程技术研究中心,成都 610500
Preparation and Properties of Carboxymethyl Guar/Polyvinyl Alcohol/Polyacrylamide Shape Memory Conducting Hydrogel
TANG Yan1, YAN Jiao1, WANG Li1,2, AN Peng1,2, YAN Guilong1,2, LAI Jingjuan1,2, LI Zhenyu1,2, ZHOU Lihua1,2, WU Yuanpeng1,2,*
1 The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 Sichuan Engineering Technology Research Center of Basalt Fiber, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 23068KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过共混和冻融的方法制备了羧甲基瓜尔胶(CMGG)/聚乙烯醇(PVA)/聚丙烯酰胺(PAM)复合导电水凝胶,并用万能拉伸试验机、电化学工作站等仪器手段对复合导电水凝胶的力学性能、形状记忆功能以及导电性能进行了一系列表征与研究。利用CMGG/PVA/PAM之间的氢键作用制备的复合导电水凝胶的拉伸强度可达0.38 MPa。NaCl的加入赋予了水凝胶优异的导电性能,CMGG的加入也使水凝胶具有形状记忆以及离子印迹的功能,且提高了水凝胶的电导率(6.19 ms·cm-1)。同时,利用该水凝胶制备了一种简单的应变传感器,其可有效地检测人体的微小运动。传感器还具有良好的压缩应变敏感性,可以实现在水凝胶上的信息加密及解密功能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐言
严娇
王犁
安鹏
颜贵龙
来婧娟
李振宇
周利华
武元鹏
关键词:  羧甲基瓜尔胶(CMGG)  聚乙烯醇(PVA)  导电水凝胶  形状记忆  应变传感器    
Abstract: Carboxymethyl guar gum (CMGG)/polyvinyl alcohol (PVA)/polyacrylamide (PAM) composite conductive hydrogel was prepared by blen-ding and freeze-thawing method. The mechanical properties, shape memory function and conductivity of composite conductive hydrogels were characterized and studied by means of universal tensile testing machine, electrochemical workstation and other instruments. The tensile strength of the composite conductive hydrogel prepared by the hydrogen bond between CMGG/PVA/PAM can reach 0.38 MPa. The addition of NaCl endows the hydrogels with excellent electrical conductivity, and the addition of CMGG also enables the hydrogels to have shape memory and ion imprinting functions, and improves the conductivity of the hydrogels (6.19 ms·cm-1). At the same time, a simple strain sensor was prepared by using the hydrogel, which can be effectively used to detect the tiny movement of human body. The sensor also has good compressive strain sensitivity, which can realize the information encryption and decryption function on the hydrogel.
Key words:  carboxymethyl guar gum (CMGG)    polyvinyl alcohol (PVA)    conductive hydrogel    shape memory    strain sensor
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TB33  
基金资助: 国家自然科学基金(52173301);四川省科技厅项目(2024ZYD0011)
通讯作者:  *武元鹏,西南石油大学新能源与材料学院教授、博士研究生导师,油气藏地质及开发工程全国重点实验室固定研究人员。研究方向为油气田开发功能高分子材料、油水分离材料、纤维增强树脂基复合材料、自修复智能高分子材料等。ypwu@swpu.edu.cn   
作者简介:  唐言,现为西南石油大学新能源与材料学院硕士研究生,在武元鹏教授的指导下进行研究。目前主要研究领域为瓜尔胶基导电水凝胶。
引用本文:    
唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
TANG Yan, YAN Jiao, WANG Li, AN Peng, YAN Guilong, LAI Jingjuan, LI Zhenyu, ZHOU Lihua, WU Yuanpeng. Preparation and Properties of Carboxymethyl Guar/Polyvinyl Alcohol/Polyacrylamide Shape Memory Conducting Hydrogel. Materials Reports, 2025, 39(3): 23090015-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090015  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23090015
1 Ye W, Guo M, Li Q, et al. Polymer Engineering and Science, 2022, 62(12), 3985.
2 Liu G, Guo M, Xue S, et al. Journal of Applied Polymer Science, 2022, 139(33), 52797.
3 Xue S, Wu Y, Liu G, et al. Journal of Materials Chemistry A, 2021, 9(9), 5730.
4 Li L, Yan B, Yang J, et al. Advanced Materials, 2015, 27(7), 1294.
5 Guo M, Yan J, Yang X, et al. Journal of Materials Chemistry A, 2021, 9(12), 7935.
6 Guo M, Wu Y, Xue S, et al. Journal of Materials Chemistry A, 2019, 7(45), 25969.
7 Lyu Y, Hu Y, Hou C, et al. 2022, 36(12), 184(in Chinese).
吕颖, 胡永琴, 厚琛, 等. 材料导报, 2022, 36(12), 184.
8 Mao J, Dai J, Zhou J, et al. Materials Reports, 2021, 35(24), 24172(in Chinese).
毛杰, 戴静波, 周俊慧, 等. 材料导报, 2021, 35(24), 24172.
9 Asoh T-A, Nakamura M, Shoji T, et al. Macromolecular Rapid Communications, 2020, 41(12), 2000169.
10 Gong Y, Cheng Y, Hu Y. Progress in Chemistry, 2022, 34(3), 616.
11 Chen Z, Chen Y, Hedenqvist M S, et al. Journal of Materials Chemistry B, 2021, 9(11), 2561.
12 Zhou H, Lai J, Zheng B, et al. Advanced Functional Materials, 2022, 32(1), 2108423.
13 Barhoum A, Sadak O, Ramirez I A, et al. Advances in Colloid and Interface Science, 2023, 317, 102920.
14 Bao Y, He J, Song K, et al. Polymers, 2022, 14(4), 769.
15 Du H, Liu W, Zhang M, et al. Carbohydrate Polymers, 2019, 209, 130.
16 Luisa Pita-Lopez M, Fletes-Vargas G, Espinosa-Andrews H, et al. European Polymer Journal, 2021, 145, 110176.
17 Bethel K, Buck A, Tindall G, et al. Mrs Communications, 2022, 12(5), 624.
18 Li S, Wang L, Zheng W, et al. Advanced Functional Materials, 2020, 30(31), 2002370.
19 Yan J, Wang L, Zhao C, et al. Langmuir, 2023, 39(3), 1061.
20 Chen W, Bu Y, Li D, et al. Journal of Materials Chemistry C, 2020, 8(3), 900.
21 Alipour S, Pourjavadi A and Hosseini S H. Carbohydrate Polymers, 2023, 310, 120610.
22 Yang T, Wang M, Jia F, et al. Journal of Materials Chemistry C, 2020, 8(7), 2326.
23 Yang X, Guo M, Yan J, et al. Advanced Functional Materials, 2022, 32(34), 2205177.
24 Guo M, Yang X, Yan J, et al. Journal of Materials Chemistry A, 2022, 10(30), 16095.
25 Chen Y, Dai S, Zhu H, et al. New Journal of Chemistry, 2021, 45(1), 314.
26 Zhang M, Deng F, Tang L, et al. Chemical Engineering Journal, 2021, 405, 126756.
[1] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[2] 李兴建, 吕佳宁, 姚新宽, 周孟, 李因文, 徐守芳. 动态热机械分析技术在高分子形状记忆效应表征中的应用进展[J]. 材料导报, 2024, 38(22): 23040274-11.
[3] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[4] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[5] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[6] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[7] 刘亮, 李思雨, 赵春霞, 向东, 李云涛, 李辉. 纤维素基碳材料应变传感器的制备及性能[J]. 材料导报, 2024, 38(13): 22110159-6.
[8] 赵光伟, 李达, 陈健, 方东, 黄才华, 石增敏, 叶永盛. Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响[J]. 材料导报, 2023, 37(9): 21010179-6.
[9] 门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
[10] 简琼艺, 王益雷, 姜喆瑞, 郭倩如, 张浩, 李可洲. 具有表面微图形化胰肠吻合口支架的构建及研究[J]. 材料导报, 2023, 37(19): 22040322-10.
[11] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[12] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[13] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[14] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[15] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed