Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23090060-10    https://doi.org/10.11896/cldb.23090060
  无机非金属及其复合材料 |
新疆北部重塑性黄土的力学特性规律及微观机制试验研究
张凌凯1,2,*, 丁旭升1,2, 樊培培1,2
1 新疆农业大学水利与土木工程学院,乌鲁木齐 830052
2 新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052
Experimental Study on Mechanical Properties and Microscopic Mechanism of Remolded Loess in Northern Xinjiang
ZHANG Lingkai1,2,*, DING Xusheng1,2, FAN Peipei1,2
1 College of Water and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
2 Xinjiang Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention, Urumqi 830052, China
下载:  全 文 ( PDF ) ( 15910KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新疆某输水明渠工程穿越大面积湿陷性黄土区域,自运行以来渠坡经常发生滑动破坏现象,为深入分析其破坏机理,通过开展室内直剪、压缩、渗透以及SEM电镜扫描试验,从宏-微观角度分析其力学特性规律及其微观物理机制。(1)直剪试验结果表明:随着含水率增大,黏聚力呈先增大后减小的趋势,在最优含水率附近达到峰值,内摩擦角呈降低的趋势;随着干密度增大,黏聚力和内摩擦角均呈增大的趋势。通过微观试验分析,随着干密度增大,骨架颗粒堆积紧密,颗粒数量减少,面积增大,圆形程度下降,定向性变差。颗粒的面积占比和定向概率熵分别是影响黏聚力和内摩擦角的主要因素。(2)压缩试验结果表明:随着含水率增加,屈服应力呈线性减小的趋势,塑性压缩参数和回弹指数均呈线性增大的趋势;随着干密度增大,屈服应力呈线性增大的趋势,塑性压缩参数和回弹指数均呈线性减小的趋势。通过微观试验分析,随着固结压力增加,胶结能力弱的颗粒团聚体被压碎,新的颗粒团聚体形成,土骨架重组形成以絮凝状为主的次生结构,颗粒数量减少,圆形程度升高,定向性增强,颗粒定向概率熵对黄土可压缩性的影响最大。(3)渗透试验结果表明:饱和渗透系数随干密度增大呈现出减小的趋势。通过微观试验分析,随着干密度增大,渗透后的黄土微观结构中架空孔隙数量减少,镶嵌孔隙和粒间孔隙增多,孔隙贯通性变差,孔隙的数量、面积占比、圆度、丰度、大孔隙面积占比均与饱和渗透系数有显著的正相关性,其中孔隙面积占比的相关性最高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张凌凯
丁旭升
樊培培
关键词:  重塑性黄土  抗剪强度  压缩变形  渗透特性  微观机理    
Abstract: A water conveyance open channel project in Xinjiang passes through a large area of collapsible loess area. Land sliding often occurs at the channel since its operation. In order to deeply analyze its failure mechanism, the indoor direct shear, compression, penetration and SEM electron microscope scanning tests were carried out to analyze its mechanical characteristics and micro-physical mechanism from a macro-micro perspective. (i) Direct shear test result showes that:with the increase of water content, the cohesion increases first and then decreases, and gets the peak value when the water content is near the optimal water content, and the internal friction angle decreases. With the increase of dry density, the internal friction angle and cohesion increase. Through microscopic experimental analysis, with the increase of dry density, the skeleton particles are closely packed, the number of particles decreases, the area of each particle increases, the roundness of each particle decreases, and the orientation of these particles becomes worse. The roundness and orientation probability entropy of particles are the main factors affecting the cohesion and internal friction angle respectively. (ii) Compression test result showes that:with the increase of water content, the yield stress decreases linearly, while the plastic compression parameters and rebound index increase linearly. With the increase of dry density, the yield stress increases linearly, and the plastic compression parameters and rebound index decrease linearly. Through microscopic test analysis, with the increase of consolidation pressure, the particle aggregates with weak cementation ability are crushed to form new particle aggregates, the soil skeleton is reorganized to form a secondary structure dominated by flocculation, the number of particles reduces, the circularity increases, and the orientation is enhanced. the particle orientation probability entropy has the greatest influence on the compressibility of loess. (iii) Percolation test result showes that:the saturated permeability coefficient decreases with the increase of dry density. Through microscopic test analysis, with the increase of dry density, the number of overhead pores in the microstructure of the permeable loess decreases, the mosaic pores and intergranular pores increase, and the pore connectivity becomes worse. The number, area ratio, roundness, abundance and large pore area ratio of pores have a significant positive correlation with the saturated permeability coefficient, and the pore area ratio has the highest correlation among them.
Key words:  remolded loess    shear strength    compression deformation    permeability    microscopic mechanism
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TU443  
基金资助: 新疆维吾尔自治区杰出青年科学基金(2022D01E45);新疆维吾尔自治区水利科技专项(XSXJ-2023-22);新疆维吾尔自治区重点研发任务专项(2022B03024-3)
通讯作者:  *张凌凯,新疆农业大学水利与土木工程学院副教授,工学博士,博士研究生导师。目前从事于环境岩土工程方面的研究与教学。xjau_zlk@163.com   
作者简介:  丁旭升,新疆农业大学水利与土木工程学院博士研究生,在张凌凯副教授的指导下进行研究学习。目前主要从事湿陷性黄土的力学特性及本构模型方面的研究。
引用本文:    
张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
ZHANG Lingkai, DING Xusheng, FAN Peipei. Experimental Study on Mechanical Properties and Microscopic Mechanism of Remolded Loess in Northern Xinjiang. Materials Reports, 2025, 39(3): 23090060-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090060  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23090060
1 Ma F L, Bai X H, Wang M, et al. In:Abstracts of the 12th national conference on rock mechanics and engineering, Nanjing, China, 2012, pp.50 (in Chinese).
马富丽, 白晓红, 王梅, 等. 第十二次全国岩石力学与工程学术大会会议论文摘要集. 南京, 2012, pp.50.
2 Zhang A J, Xing Y C, Hu X L, et al. Chinese Journal of Geotechnical Engineering, 2016, 38(S2), 117 (in Chinese).
张爱军, 邢义川, 胡新丽, 等. 岩土工程学报, 2016, 38(S2), 117.
3 Wang P, Xu S, Shao S, et al. Frontiers in Earth Science, 2022, 9, 762508.
4 Feng L, Zhang M S, Hu W, et al. Rock and Soil Mechanics, 2019, 40(1), 235 (in Chinese).
冯立, 张茂省, 胡炜, 等. 岩土力学, 2019, 40(1), 235.
5 Zhang Y Y, Ye W J. Civil Engineering Journal-Tehran, 2018, 4(4), 785.
6 Mu Q Y, Zhou C, Ng C W W. Transportation Geotechnics, 2020, 23, 100345.
7 Yang Z K, Chen G, Meng X M, et al. Journal of Lanzhou University (Natural Science), 2017, 53(3), 285 (in Chinese).
杨仲康, 陈冠, 孟兴民, 等. 兰州大学学报(自然科学版), 2017, 53(3), 285.
8 Gu T F, Wang J D, Wang C X, et al. Journal of Soils and Sediments, 2019, 19(10), 3463.
9 Cai G Q, Zhang C, Huang Z W, et al. Chinese Journal of Geotechnical Engineering, 2020, 42(S2), 32 (in Chinese).
蔡国庆, 张策, 黄哲文, 等. 岩土工程学报, 2020, 42(S2), 32.
10 Xu J, Wei W, Bao H, et al. Environmental Earth Sciences, 2020, 79(13), 346.
11 Kin D, Kang S S. Ksce Journal of Civil Engineering, 2013, 17(2), 335.
12 Jia Y J, Chen C L, Ping W. International Conference on Computational Science & Engineering, 2016, 68, 27.
13 Wang F, Li G Y, Mu Y H, et al. Rock and Soil Mechanics, 2016, 37(8), 2306 (in Chinese).
王飞, 李国玉, 穆彦虎, 等. 岩土力学, 2016, 37(8), 2306.
14 Wang F, Li G, Ma W, et al. Advances in Civil Engineering, 2020, 1, 8839347.
15 She H C, Hu Z Q, Qu Z. Mathematical Problems in Engineering, 2019, 2019, 4790250.
16 Hao L Y, Qiao J Y. Shanxi Building, 2010, 36(23), 155 (in Chinese).
郝立勇, 乔俊义. 山西建筑, 2010, 36(23), 155.
17 Wang B, Huang X F, Qiu M M, et al. Journal of Water Resources and Water Engineering, 2022, 33(2), 186 (in Chinese).
王博, 黄雪峰, 邱明明, 等. 水资源与水工程学报, 2022, 33(2), 186.
18 Zhou M R, Wang J W, Wang T, et al. Journal of Architecture and Civil Engineering, 2017, 34(1), 99 (in Chinese).
周茗如, 王晋伟, 王腾, 等. 建筑科学与工程学报, 2017, 34(1), 99.
19 Yang J, Deng M L, Bai X H. Chinese Journal of Underground Space and Engineering, 2017, 13(6), 1467 (in Chinese).
杨晶, 邓美林, 白晓红. 地下空间与工程学报, 2017, 13(6), 1467.
20 Hong B, Li X A, Wang L, et al. Environmental Earth Sciences, 2019, 78(15), 447.
21 Pan Z H, Xiao T, Li P. Rock and Soil Mechanics, 2022, 43(S1), 357 (in Chinese).
潘振辉, 肖涛, 李萍. 岩土力学, 2022, 43(S1), 357.
22 Wang H M, Ni W K. Rock and Soil Mechanics, 2022, 43(3), 729 (in Chinese).
王海曼, 倪万魁. 岩土力学, 2022, 43(3), 729.
23 Hu Z Q, Liang Z C, Guo J, et al. Chinese Journal of Geotechnical Engineering, 2020, 42(S2), 26 (in Chinese).
胡再强, 梁志超, 郭婧, 等. 岩土工程学报, 2020, 42(S2), 26.
24 Hu H J, Li C H, Cui Y J, et al. Journal of Hydraulic Engineering, 2018, 49(10), 1216 (in Chinese).
胡海军, 李常花, 崔玉军, 等. 水利学报, 2018, 49(10), 1216.
25 Xu J, Wang Z Q, Ren J W, et al. Geomechanics and Engineering, 2018, 14(4), 307.
26 Li X A, Sun J Q, Ren H Y, et al. Environmental Earth Sciences, 2022, 81, 290.
27 Sun J Q, Li X A, Geng Q, et al. Australian Journal of Earth Sciences, 2021, 68(6), 899.
28 Jian T, Kong L W, Bai W, et al. Frontiers in Earth Science, 2022, 10, 923358.
29 Guo Y, Ni W, Kou Z, et al. Soil Mechanics and Foundation Engineering, 2020, 57(5), 394.
30 Ministry of Water Resources of China. GB/T50123-2019 Geotechnical engineering test method and criterion. China Plan Publishing House, China, 2019 (in Chinese).
中华人民共和国水利部. GB/T50123-2019 土工试验方法标准. 中国计划出版社, 2019.
31 Wang G, Zhang X W, Liu X Y, et al. Rock and Soil Mechanics, 2021, 42(12), 3291 (in Chinese).
王港, 张先伟, 刘新宇, 等. 岩土力学, 2021, 42(12), 3291.
32 Cox M R, Budhu M. Engineering Geology, 2008, 96(1-2), 1.
33 Yuan Z H. Study on the strength and microstructure change mechanism of loess under dry-wet cycle. Ph. D. Thesis, Chang'an University, China, 2015 (in Chinese).
袁志辉. 干湿循环下黄土的强度及微结构变化机理研究. 博士学位论文, 长安大学, 2015.
34 Zhang K K. Study on anisotropic characteristics of natural loess with interface based on quantitative description of microstructure. Master's Thesis, Chang'an University, China, 2020 (in Chinese).
张科科. 基于微观结构定量描述的含界面天然黄土各向异性特征研究. 硕士学位论文, 长安大学, 2020.
35 Zhang F, Ye W M, Chen Y G, et al. Engineering Geology, 2016, 207, 48.
36 Lloret A, Villar M, Sanchez M, et al. Geotechnique, 2003, 53(1), 27.
37 Li P, Vanapalli S, Li T. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(2), 256. 1
38 Zhang Y T. Study on the influence of temperature on the permeability of remolded Malan loess. Master's Thesis, Chang'an University, China, 2019 (in Chinese).
张瑜婷. 温度对重塑马兰黄土渗透性的影响研究. 硕士学位论文, 长安大学, 2019.
[1] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[2] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[3] 田小革, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州. TPU/Nano-ZnO复合改性沥青的性能研究及微观机制[J]. 材料导报, 2024, 38(16): 23050071-10.
[4] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[5] 赵嘉豪, 庞玉华, 孙琦, 牛犇, 刘东, 张喆. 剧烈扭转压缩轧制45钢超细晶棒组织演变机理[J]. 材料导报, 2023, 37(15): 22010069-5.
[6] 陈宇良, 张绍松, 徐金俊, 叶培欢, 姜锐. 压剪作用下PVA纤维再生混凝土力学性能试验研究[J]. 材料导报, 2023, 37(11): 21090102-7.
[7] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[8] 王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
[9] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[10] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[11] 陈宇良, 姜锐, 陈宗平, 刘杰. 直剪状态下再生混凝土的变形性能及损伤分析[J]. 材料导报, 2021, 35(19): 19015-19021.
[12] 王锐, 黄榜彪, 莫济成, 李青, 朱基珍. 冻融循环对烧结页岩多孔砖砌体抗剪性能的影响[J]. 材料导报, 2020, 34(Z1): 258-260.
[13] 王淋, 郭乃胜, 温彦凯, 谭忆秋, 尤占平. 考虑老化影响的岩沥青复合改性沥青流变特性及微观机制[J]. 材料导报, 2020, 34(18): 18065-18073.
[14] 谢誉璐, 黄光胜, 刘帅帅, 张军磊, 潘复生. 微量Ca元素对AZ31镁合金热变形行为的影响[J]. 材料导报, 2020, 34(12): 12070-12075.
[15] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed