Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22040205-8    https://doi.org/10.11896/cldb.22040205
  金属与金属基复合材料 |
铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图
孙文明1, 李韶林1,2, 宋克兴1,2,3,*, 王强松4,5,*, 丁宗业6, 朱莹莹1
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 河南科技大学河南省有色金属材料科学与加工技术重点实验室,河南 洛阳 471023
3 河南省科学院,郑州 450052
4 有研科技集团有限公司有色金属材料制备加工国家重点实验室,北京 100088
5 有研工程技术研究院有限公司,北京 101407
6 佛山科学技术学院机电工程与自动化学院,广东 佛山 528225
Hot Deformation Behavior and Processing Diagram of As-cast Cu-1.16Ni-0.36Cr Alloy
SUN Wenming1, LI Shaolin1,2, SONG Kexing1,2,3,*, WANG Qiangsong4,5,*, DING Zongye6, ZHU Yingying1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 Henan Key Laboratory of Non-ferrous Materials Science and Processing Technology, Henan University of Science and Technology, Luoyang 471023, Henan, China
3 Henan Academy of Sciences, Zhengzhou 450052, China
4 State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd., Beijing 100088, China
5 GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
6 School of Mechanical and Electrical Engineering and Automation, Foshan University, Foshan 528225, Guangdong, China
下载:  全 文 ( PDF ) ( 15987KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Gleeble-1500型热模拟试验机,研究了Cu-1.16Ni-0.36Cr合金在变形量为50%、变形温度为750~950 ℃、变形速率为0.01~10 s-1下的热压缩变形行为,建立该合金热变形的本构方程和热加工图。结果表明:Cu-1.16Ni-0.36Cr合金在700~900 ℃的变形温度下以动态回复为主,在950 ℃下发生完全的动态再结晶。通过真应力应变曲线得到了该合金热变形的本构方程和热加工图。根据应变对流变应力的影响对本构方程进行修正,通过修正后的回归方程对流变应力进行模拟,模拟结果与实验结果吻合。热加工图表明,该合金适宜的热变形工艺参数为900~950 ℃和0.1~1 s-1,其中 950 ℃和1 s-1变形条件下组织状态最佳,为晶粒细小均匀的等轴晶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙文明
李韶林
宋克兴
王强松
丁宗业
朱莹莹
关键词:  Cu-Ni-Cr合金  热压缩变形  本构方程  热加工图  动态再结晶    
Abstract: Hot compressive deformation behavior of Cu-1.16Ni-0.36Cr alloy at the temperatures from 750 ℃ to 950 ℃ and the strain rates from 0.01 s-1 to 10 s-1 was studied on a Gleeble-1500 thermal simulator. The constitutive equation and processing diagram of the alloy were established. The results showed that the dynamic recovery of Cu-1.16Ni-0.36Cr alloy was dominant at the strain temperature between 700 ℃ to 900 ℃, and dynamic recrystallization took place at 950 ℃. The constitutive equation and processing diagram were obtained by the true stress-strain curve. Based on the effect of strain on flow stress, the constitutive equation was modified. The flow stress was simulated by regression equation, and the results were in good agreement with the experimental results. The processing diagram showed that the suitable thermal deformation parameters were 900—950 ℃ of deformation temperatures and 0.1—1 s-1 of strain rate. Equiaxed grains with fine grains are obtained at appropriate defor-mation parameters, which were 950 ℃ of temperature and 1 s-1 of strain rate.
Key words:  Cu-Ni-Cr alloy    hot compression deformation    constitutive equation    processing diagram    dynamic recrystallization
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG146.1  
基金资助: 中国博士后科学基金(2020T130172;2020M682288);河南省博士后经费资助(202002063);河南省重点研发推广专项计划 (212102210110);河南省高等学校重点科研项目(21A430014);中国工程发展战略河南研究院战略咨询研究项目(2021HENZDA02)
通讯作者:  *宋克兴,河南省科学院党委副书记、副院长。1989年毕业于重庆大学获学士学位,1997年毕业于洛阳工学院(现河南科技大学)获硕士学位,2005年毕业于西安交通大学获博士学位;二级教授/博导,密西根大学高级访问学者;国家重点人才计划创新领军人才,科技部重点领域创新团队带头人,教育部黄大年式教师团队带头人,国务院特殊津贴专家;专注于高性能铜合金及关键制备加工技术开发。在金属材料Top期刊Acta MaterialiaScripta MaterialiaJMST等发表学术论文128篇,出版专著8部;授权国际发明专利5件、国内发明专利45件,获国家科技进步二等奖2项。kxsong@haust.edu.cn
王强松,北京有色金属研究总院教授。1992年毕业于北京科技大学取得学士学位,2010年取得北京科技大学博士学位。2015年至今在河南科技大学担任兼职教授,2018年至今在华北理工大学担任教授,2019年至今在北京理工大学担任兼职导师。在弹性铜合金制备与成型工艺、弹性铜合金组织性能研究、低温超高韧铜合金材料制备与机理研究、高强高导铜合金板材制备加工技术、铜及铜合金动态力学性能及射流特性研究等多个领域从事工作。在国内外重要刊物发表相关学术论文20余篇,编写铜合金材料领域专著1项,申请国家发明专利近20项。wangqiangsongbj@163.com   
作者简介:  孙文明,河南科技大学硕士研究生。2020年6月在河南科技大学获得工学学士学位。目前研究的领域为高性能铜合金加工制备与性能分析等方面。
引用本文:    
孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
SUN Wenming, LI Shaolin, SONG Kexing, WANG Qiangsong, DING Zongye, ZHU Yingying. Hot Deformation Behavior and Processing Diagram of As-cast Cu-1.16Ni-0.36Cr Alloy. Materials Reports, 2024, 38(2): 22040205-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040205  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22040205
1 Rao P P, Agrawal B K, Rao A M. Journal of Materials Science, 1986, 21(11), 3759.
2 Taher A M. Materials Science Forum, 2016, 872, 13.
3 Taher A, Jarjoura G, Kipouros G J. 2013, 48(1), 71.
4 Zhang X N, Wang Q, Wang B, et al. Materials Reports, 2015, 29(18), 5 (in Chinese).
张显娜, 王清, 陈勃, 等. 材料导报, 2015, 29(18), 5.
5 Xiao X P, Liu R Q, Chen H M, et al. Materials Reports, 2015, 29(10), 148(in Chinese).
肖翔鹏, 柳瑞清, 陈辉明, 等. 材料导报, 2015, 29(10), 148.
6 Chou A, Datta A, Meier G H, et al. Journal of Materials Science, 1978, 13(3), 541.
7 Hernandez-Santiago F, Lopez-Hirata V M, Munoz M, et al. Materials Science Forum, 2010, 656, 2346.
8 Lopez-Hirata V M, Hernández-Santiago F, Dorantes-Rosales H J, et al. Materials Transactions, 2001, 42(7), 1417.
9 Li X N, Li Z M, Cheng X T, et al. Materials Chemistry and Physics, 2019, 223, 486.
10 Hu B T, Song L P, Lyu Z D. Nonferrous Metals Engineering & Research, 2018, 39(6), 28 (in Chinese).
胡滨涛, 宋练鹏, 吕昭弟. 有色冶金设计与研究, 2018, 39(6), 28.
11 Sun Q, Chen L. Materials Reports, 2017, 31(22), 5 (in Chinese).
孙倩, 陈冷. 材料导报, 2017, 31(22), 5.
12 Li Y J, Wang C, Zhang K L, et al, Heat Treatment of Metals, 2017, 42(6), 5 (in Chinese).
李应举, 王聪, 张奎良, 等. 金属热处理, 2017, 42(6), 5.
13 Wang B J, Tian B H, Zhang Y, et al. Transactions of Materials and Heat Treatment, 2018, 39(1), 145 (in Chinese).
王冰洁, 田保红, 张毅, 等. 材料热处理学报, 2018, 39(1), 145.
14 Jiang H, Dong J, Zhang M, et al. Journal of Alloys and Compounds, 2017, 735, 1520.
15 Yu Z Q, Zhou G S, Tuo L F, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(11), 2464.
16 Sellars C M, Mctegart W J. Acta Metallurgica, 1966, 14(9), 1136.
17 Zener C, Hollomon J H. Journal of Applied Physics, 1944, 15(1), 22.
18 Cai J, Li F, Liu T, et al. Materials & Design, 2011, 32(3), 1144.
19 Yang J, Wang G, Jiao X, et al. Materials Characterization, 2018, 137, 170.
20 Ding Z Y, Jia S G, Ning X M, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(8), 7 (in Chinese).
丁宗业, 贾淑果, 宁向梅, 等. 中国有色金属学报, 2020, 30(8), 7.
21 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Metallurgical Tran-sactions A, 1984, 15(10), 1883.
22 Ravichandran N, Prasad Y. Metallurgical Transactions A (Physical Me-tallurgy and Materials, Science), 1991, 22(10), 2339.
23 Bozzini B, Cerri E. Materials Science and Engineering A, 2002, 328(1-2), 344.
24 Prasad Y V R K, Seshacharyulu T. Metallurgical Reviews, 1998, 43(6), 243.
25 Murty S V S N, Rao B N, Kashyap B P. Modelling & Simulation in Materials Science & Engineering, 2002, 10(5), 503.
26 Zhang Y, Liu P, Tian B H, et al. Transactions of Materials and Heat Treatment, 2012, 33(11), 18 (in Chinese).
张毅, 刘平, 田保红, 等. 材料热处理学报, 2012, 33(11), 18.
27 Liu Y, Hu R, Li J S, et al. Journal of Materials Processing Technology, 2009, 209(8), 4020.
28 Feng J, Tian B H, Sun Y W, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(12), 6 (in Chinese).
冯江, 田保红, 孙永伟, 等. 中国有色金属学报, 2012, 22(12), 6.
29 Su J H, Sun H, Ren F Z, et al. Transactions of Nonferrous Metals Society of China, 2018, 28(1), 9 (in Chinese).
苏娟华, 孙浩, 任凤章, 等. 中国有色金属学报, 2018, 28(1), 9.
30 Wang C Y, Wang Y H, Li Y, et al. Journal of Aeronautical Materials, 2022, 42(2), 11 (in Chinese).
王春阳, 王玉会, 李野, 等. 航空材料学报, 2022, 42(2), 11.
[1] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[2] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[3] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[4] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[5] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[6] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[7] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[8] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[9] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[10] 黄子坤, 孙威. 钛合金动态塑性变形过程中绝热剪切带的形成机理[J]. 材料导报, 2021, 35(3): 3122-3128.
[11] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[12] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[13] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[14] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[15] 刘筱, 王洋洋, 叶俊宏, 朱必武, 杨辉, 胡铭月, 唐昌平, 刘文辉. AZ31镁合金高应变速率轧制宏微观仿真[J]. 材料导报, 2021, 35(14): 14101-14106.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed